Anabolic Phytosteroids
- (Comment from non-reviewer) None of the cited sources use the term "Anabolic phytosteroids". – Thjarkur (talk) 23:15, 31 July 2019 (UTC)
This article relies too much on references to primary sources. (Learn how and when to remove this template message) |
Anabolic phytosteroids (APS) are plant steroids that have an anabolic biological effect in humans[not in citation given] without effecting hormones. The unique drug delivery system of SMEDDS (self-microemulsifying drug delivery system) is crucial in turning potential anabolic phytochemicals into APS.[citation needed] Although the term anabolic phytosteroids was not official[clarification needed] until 2018, the notion of APS was introduced[non-primary source needed] by researcher Slavko Komarnytsky in an interview with the Mary Sue online newspaper in 2011,[1] following research published in the FASEB Journal on brassinosteroids.[2]
Categories[edit]
There are four current categories of APS:[citation needed]
Below are studied APS based on categories:
Brassinosteroids[edit]
Ecdysteroids[edit]
PGC1-α Steroids[edit]
Triterpenoids[edit]
Delivery system[edit]
SMEDDS is a crucial tool in formulating APS.[citation needed] SMEDDS increase the bioavailability of poorly bioavailable lipophilic drugs.[12][improper synthesis?] Most discovered phytochemicals are lipophilic,[13] and all current APS are lipophilic.[citation needed] For instance, ursolic acid has a predicted LogP value of 6.79.[14] This does not adhere to Lipinski's Rule that LogP should be less than 5 for a molecule to dissolve in the GI juices to be absorbed into the hepatic portal. This suggests without SMEDDS ursolic acid is extremely unbioavailable and does not fit the APS category.[citation needed] However, utilising SMEDDS, ursolic acid is an APS.
Anabolic biochemical mechanisms of APS[edit]
PI3K/Akt Cellular Pathway[edit]
This is the primary biochemical mechanism most[not in citation given] APS use.[2][6][10] The PI3K/Akt pathway is the same pathway IGF-1 (insulin-like growth factor-1) signals for its anabolic effect.[15]
cAMP phosphodiesterase inhibition[edit]
This is a secondary biochemical mechanism APS[not in citation given] use.[4] The phosphodiesterase enzyme breaks down cAMP into AMP. cAMP promotes anabolic functions[16][improper synthesis?] including increasing hGH (growth hormone) secretion via GHRH (growth hormone releasing-hormone) through calcium channels.[17][18]
References[edit]
- ↑ "Steroid in Mustard Plant Produces Anabolic Steroid Effect with Minimal Side Effects". www.themarysue.com. Retrieved 2019-04-26.
- ↑ 2.0 2.1 2.2 Esposito, Debora; Komarnytsky, Slavko; Shapses, Sue; Raskin, Ilya (2011-07-11). "Anabolic effect of plant brassinosteroid". The FASEB Journal. 25 (10): 3708–3719. doi:10.1096/fj.11-181271. ISSN 0892-6638. PMC 3177571. PMID 21746867.
- ↑ Syrov, V. N.; Kurmukov, A. G. (September 1976). "[Experimental study of the anabolic activity of 6-ketoderivatives of certain natural sapogenins]". Farmakologiia I Toksikologiia. 39 (5): 631–635. ISSN 0014-8318. PMID 1028596.
- ↑ 4.0 4.1 Tian, Li-Wen; Zhang, Zhen; Long, Hai-Lan; Zhang, Ying-Jun (2017-08-01). "Steroidal Saponins from the Genus Smilax and Their Biological Activities". Natural Products and Bioprospecting. 7 (4): 283–298. doi:10.1007/s13659-017-0139-5. ISSN 2192-2209. PMC 5507813. PMID 28646341.
- ↑ Syrov, V. N.; Kurmukov, A. G. (November 1976). "[Anabolic activity of phytoecdysone-ecdysterone isolated from Rhaponticum carthamoides (Willd.) Iljin]". Farmakologiia I Toksikologiia. 39 (6): 690–693. ISSN 0014-8318. PMID 1030669.
- ↑ 6.0 6.1 "Biology of Sport". 183.indexcopernicus.com. Retrieved 2019-04-26.
- ↑ Mamatkhanov, A. U.; Yakubova, M. R.; Syrov, V. N. (1998-03-01). "Isolation of turkesterone from the epigeal part ofAjuga turkestanica and its anabolic activity". Chemistry of Natural Compounds. 34 (2): 150–154. doi:10.1007/BF02249133. ISSN 1573-8388.
- ↑ Schreiner, G.; Dugar, S.; Hathout, Y.; Perkins, G.; Villareal, F.; Abresch, R.; Goude, E.; deBie, E.; Wagner, A. (2015-10-01). "Epicatechin enhances mitochondrial biogenesis, increases dystrophin and utrophin, increases follistatin while decreasing myostatin, and improves skeletal muscle exercise response in adults with Becker muscular dystrophy (BMD)". Neuromuscular Disorders. 25: S314–S315. doi:10.1016/j.nmd.2015.06.456. ISSN 0960-8966.
- ↑ Gutierrez-Salmean, Gabriela; Ciaraldi, Theodore P.; Nogueira, Leonardo; Barboza, Jonathan; Taub, Pam R.; Hogan, Michael C.; Henry, Robert R.; Meaney, Eduardo; Villarreal, Francisco; Ceballos, Guillermo; Ramirez-Sanchez, Israel (January 2014). "Effects of (−)-epicatechin on molecular modulators of skeletal muscle growth and differentiation". The Journal of Nutritional Biochemistry. 25 (1): 91–94. doi:10.1016/j.jnutbio.2013.09.007. PMC 3857584. PMID 24314870.
- ↑ 10.0 10.1 Kunkel, Steven D.; Elmore, Christopher J.; Bongers, Kale S.; Ebert, Scott M.; Fox, Daniel K.; Dyle, Michael C.; Bullard, Steven A.; Adams, Christopher M. (2012-06-20). Müller, Michael, ed. "Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease". PLoS ONE. 7 (6): e39332. Bibcode:2012PLoSO...739332K. doi:10.1371/journal.pone.0039332. ISSN 1932-6203. PMC 3379974. PMID 22745735.
- ↑ Ong, Victor YC; Tan, Benny KH (2007-01-29). "Novel phytoandrogens and lipidic augmenters from Eucommia ulmoides". BMC Complementary and Alternative Medicine. 7 (1): 3. doi:10.1186/1472-6882-7-3. ISSN 1472-6882. PMC 1797194. PMID 17261169.
- ↑ Neslihan Gursoy, R.; Benita, Simon (April 2004). "Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs". Biomedicine & Pharmacotherapy. 58 (3): 173–182. doi:10.1016/j.biopha.2004.02.001. PMID 15082340.
- ↑ Huang, Qingrong; Ho, Chi-Tang; Li, Shiming; Ting, Yuwen (2013-03-13), "Emulsion in Oral Delivery of Bioactive Lipophilic Phytochemicals", Nutrition, Functional and Sensory Properties of Foods, Special Publications, pp. 205–223, doi:10.1039/9781849737685-00205, ISBN 978-1-84973-644-2, retrieved 2019-04-26
- ↑ "Calculation of molecular properties and bioactivity score". molinspiration.com. Retrieved 2019-04-26.
- ↑ Stitt, Trevor N.; Drujan, Doreen; Clarke, Brian A.; Panaro, Frank; Timofeyva, Yekatarina; Kline, William O.; Gonzalez, Michael; Yancopoulos, George D.; Glass, David J. (2004-05-07). "The IGF-1/PI3K/Akt Pathway Prevents Expression of Muscle Atrophy-Induced Ubiquitin Ligases by Inhibiting FOXO Transcription Factors". Molecular Cell. 14 (3): 395–403. doi:10.1016/S1097-2765(04)00211-4. PMID 15125842.
- ↑ Ali, Eunüs S.; Hua, Jin; Wilson, Claire H.; Tallis, George A.; Zhou, Fiona H.; Rychkov, Grigori Y.; Barritt, Greg J. (September 2016). "The glucagon-like peptide-1 analogue exendin-4 reverses impaired intracellular Ca2 + signalling in steatotic hepatocytes". Biochimica et Biophysica Acta (Bba) - Molecular Cell Research. 1863 (9): 2135–2146. doi:10.1016/j.bbamcr.2016.05.006.
- ↑ Mergl, Z.; Acs, Z.; Makara, G. B. (1995). "Growth hormone secretion and activation of cyclic AMP by growth hormone releasing hormone and gamma-aminobutyric acid in the neonatal rat pituitary". Life Sciences. 56 (8): 579–585. doi:10.1016/0024-3205(94)00490-J. ISSN 0024-3205. PMID 7532776.
- ↑ Ray, K. P.; Wallis, M. (August 1988). "Regulation of growth hormone secretion and cyclic AMP metabolism in ovine pituitary cells: interactions involved in activation induced by growth hormone-releasing hormone and phorbol esters". Molecular and Cellular Endocrinology. 58 (2–3): 243–252. doi:10.1016/0303-7207(88)90160-8. ISSN 0303-7207. PMID 2463192.
This article "Anabolic Phytosteroids" is from Wikipedia. The list of its authors can be seen in its historical and/or the page Edithistory:Anabolic Phytosteroids. Articles copied from Draft Namespace on Wikipedia could be seen on the Draft Namespace of Wikipedia and not main one.