Biosynthesis of a Biotin Compound Containing ⁷⁵Se
First edition (English) | |
Authors | Janet Frost |
---|---|
Illustrator | |
Country | United States |
Language | English |
Subject | Biosynthesis of ⁷⁵Se-Biotin |
Publisher | Binghamton University |
Publication date | September 3, 1977 |
Pages | 82 |
OCLC | 37530739 |
Biosynthesis of a Biotin Compound Containing ⁷⁵Se is a dissertation written by Janet Frost. She is known for her research in the biosynthesis of biotin compounds, focusing particularly on those that include the radioactive isotope Selenium-75 (⁷⁵Se). Her work has significantly advanced our understanding of biotin's role in cellular processes. It has shed light on the potential applications of selenium-labeled compounds in biochemistry and medicine.[1]
Background[edit]
Biotin, or vitamin B7, is a vital coenzyme involved in various metabolic processes, including fatty acid synthesis, amino acid metabolism, and gluconeogenesis. Selenium is an essential trace element with important biological roles, including antioxidant defense and thyroid hormone metabolism.[2] Due to selenium's radioactive properties, incorporating selenium into biotin compounds provides a unique tool for studying biotin's function and distribution in biological systems.
Research and Methodology[edit]
Frost focused on the biosynthesis of biotin compounds containing the isotope ⁷⁵Se.[3] Her research included the following key steps:
- Isotope Selection and Handling: Selecting ⁷⁵Se for its suitable half-life and radiation properties, ensuring safe handling and use in laboratory settings.
- Chemical Synthesis: Development of a chemical synthesis pathway to incorporate ⁷⁵Se into the biotin molecule without disrupting its biological activity.
- Biological Integration: Studying how the synthesized ⁷⁵Se-biotin compound is incorporated into biological systems, including its uptake, distribution, and metabolic fate in cells.
- Analytical Techniques: Using advanced analytical techniques, such as chromatography and mass spectrometry, to track the ⁷⁵Se-biotin compound in biological samples and investigate its interaction with cellular components.
Findings and Implications[edit]
The research conducted by Frost yielded several significant findings:
- The ⁷⁵Se-biotin compound retained the biological activity of natural biotin, thereby enabling its utilization in various biochemical assays.
- The incorporation of ⁷⁵Se allowed precise tracking and quantification of biotin within complex biological systems.
- The study provided valuable insights into the involvement of biotin in cellular processes and its potential therapeutic applications.
Applications[edit]
- Biochemical Research: The capability to track biotin in cells and tissues has substantially advanced our understanding of its metabolic pathways and interactions with proteins.
- Medical Diagnostics: The utilization of ⁷⁵Se-labeled biotin compounds holds promise for diagnostic imaging and therapeutic monitoring, particularly in the investigation of biotin deficiency and related disorders.
- Drug Development: Frost's research insights could aid in the development of biotin-based therapies and selenium-containing drugs for various medical conditions.[3]
References[edit]
- ↑ "The ORB: Open Repository at Binghamton, Masters Thesis". 1977. Archived from the original on 3 July 2024. Retrieved 3 July 2024 – via orb.binghamton.edu. Unknown parameter
|url-status=
ignored (help) - ↑ "The Nutrition Reporter". Fort Collins Coloradoan. 2015. p. F2. Archived from the original on 5 July 2024. Retrieved 4 July 2024 – via Newspapers.com. Unknown parameter
|url-status=
ignored (help) - ↑ 3.0 3.1 "The biosynthesis of a biotin compound containing ⁷⁵Se". 1977. Archived from the original on 15 June 2024. Retrieved 14 June 2024 – via suny-bin.primo.exlibrisgroup.com. Unknown parameter
|url-status=
ignored (help)
Works Cited[edit]
Journals[edit]
- Ahluwalia, Gurjit S., Yashpal R. Saxena and Harold H. Williams (1968). "Quantitative studies on selenite metabolism in, Escherichia coli. Arch. Biochem. Biophys. 124 (79–84).
- Ainsworth, G. C., F. K. Sparrow, A. S. Sussman (1973). "Basidomycetes and lower fungi. The Fungi an Advance Treatice. Vol. IV B. A taxonomic review with keyes. Academic Press: New York.
- Alexopoulos, C. J., (1962). Introductory Mycology. John Wiley & Sons Inc. New York.
- Allaway, W. H. (1973). Selenium in the food chain. The Cornell Veterinarian. 63 (151–170).
- Barkes, L. and R. W. Fleming. (1974). Production of dimethyl-selenide gas from inorganic selenium by eleven soil fungi. Bull. Environ. Contam. Toxicol. 12 (308–311).
- Bell, J. G. (1974). Microbiological assay of vitamins in the B group in food stuffs. Lab. Pract. 23 (235–239).
- Bessey, E. A. (1950). Morphology and Taxonomy of Fungi. The Blakeston Co. Philadelphia.
- Birnbaum, J. and C. H. Pai. (1967). Biosynthesis of biotin in microorganisms. J. Bacteriol. 94 (1846–1853).
- Bory, S. and A. Marquet. (1976). Synthese de la(+) Selenobiotin. Tetrahedron Letters. 24 (2033–2036).
- Bray, G. A. (1960). A simple efficient liquid scintillation method for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1 (279–285).
- Byers, H. G. (1935). Selenium occurrence in certain soils in the United States, with a discussion of related topics. U. S. Dept. Agr. Tech. Bull. 482 (1-48).
- Challenger, F. (1951). Biological methylation. Advan. Enaymol. Relat. Areas Mol. Biol. 12 (429–491).
- Cheeseman, P. and C. H. Pai. (1970). Partial purification and properties of d-desthiobiotin synthesis from Escherichia coli. J Bacteriol. 104 (726–733).
- Chenouda, M. and z. A, El-Awamry. (1971) a. Biosynthesis of biotin by microorganisms 1. Biotin-vitamers accumulated in the culture medium of Phycomyces blakesleeanus and the time course synthesis in relation to metabolic activities. J. Gen. Appl. Microbial. 17 (335–343).
- Chenouda, M. and Z. A. El-Awamry. (1971) b. Biosynthesis of biotin by microorganisms II. Biochemical factors affecting the synthesis of biotin vitamers in Phycomyces blakesleeanus. J. Gen. Appl. Microbial. 17 (345–352).
- Chenouda, M. and Z. A. El-Awamry. (1971) c. Biosynthesis of biotin by microorganisms. III. Mechanism of biotinvitamer biosynthesis in Phycomyces blakesleeanus. J. Gen. Appl. Microbial. 17 (353–361).
- Coch, E. H., R. C. Greene. (1971). Utilization of selenomethionine by Escherichia coli. Biochim. Biophy. Acta. 230 (223–236).
- Cowie, D. B. and G. N. Cohen. (1957). Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim. Biophys. Acta. 26 (252–261).
- Eisenberg, M.A. (1962). The incorporation of 1,7 c14 pimelic acid into biotin vitamers. Biochem. and Biophys. Res. Comm. 8 (437–441).
- Eisenberg, M.A. and K. Krell. (1969). Desthiobiotin synthesis from 7,8-diaminopelargonic acid in cell-free extracts of a biotin auxtroph of Escherichia coli K-12. J. Biol. Chem. 244 (5503–5509).
- Eisenberg, M. A. and R. Maseda. (1966). An early intermediate in the biosynthesis of biotin: Incorporation studies with (1, 7 c2 ) pimelic acid. Biochem. J. 101 (601–606).
- Eisenberg, M. A . and Star. (1968). Synthesis of 7-oxo-8- aminopelargonic acid, a biotin vitamer, in cell-free extracts of Escherichia coli biotin auxtrophs. J. Bacteriol. 96 (1291–1298).
- Elford, H. L., and L. D. Wright. (1963). The incorporation of pimelic acid as a unit in the biosynthesis of biotin. Biochem. Biophys. Res. Comm. 10 (373–378).
- Fels, G. I. and V. H. Cheldelin. (1949). Selenate inhibition studies. III. The role of sulfate in selenate toxicity in yeast. Arch. Biochem. Biophys. 22: (402-405).
- Genghofe, D.S., C. W. H. Partridge, and F. H. Carpenter. (1948). An agar plate assay for biotin. Arch. Biochem. Biophys. 17: (413-420).
- Gyorgy, P. (1954). Biotin II Chemistry. In: The Vitamins Vol. 1 W. H. Sebell, Jr. and R. S. Harris eds. (pp. 527-571)
- Hammer, K. C., U. S. Stewart and G. Matrone. (1943). Thiamine Determination by the fungus growth method and its comparison with other methods. Food Res. 8: (444-451).
- Hertz, R. (1943). Modification of the yeast-growth assay method of biotin. Proc. Soc. Exptl. Biol. Med. 52: (15-17).
- Hoffman, J. L., K. P. McConnell and D.R. Carpenter. (1970). Aminoacylation of Escherichia coli methionine tRNA by Selenomethionine. Biochim. Biophys. Acta 199: (531-534).
- Hoffman, J. L., K. P. McConnell. (1974). Presence of 4-seleno-uridine in Escherichia coli tRNA. Biochim. Biophys. Acta. 366: (109- 113).
- Huber, R. E., I. H. Segal, and R. S. Criddle. (1967). Growth of Escherichia coli on selenate. Biochim. Biophys. Acta. 141: (573-586).
- Izumi, Y., H. Morita, K. Sato, T. Tani and K. Ogata. (1972). Synthesis of biotin vitamers from pimelic acid and coenzyme A by cell-free extracts of various bacteria. Biochirn. Biophys. Acta. 264: (210-213).
- Izumi, Y., K. Sugisaki, T. Tank and K. Ogata. (1973) a. Incorporation of the sulfur of L 35s-methimine into the biotin molecule by intact cells of Rhodotorula glutinis. Biochim. Biophys. Acta. 304: (887-890).
- Izumi, Y., H. Mant, Y. Tani, and K. Ogata . (1973) b. Partial purification and some properties of 7-keto-8-aminopelargonic acid synthetase, an enzyme involved in biotin biosynthesis. Agric. Biol. Chem. 37: (1327-1333).
- Izumi, Y., H. Morita, Y. Tani, and K. Ogata. (1974). Thepimelyl-CoA synthetase responsible for the first step in biotin biosynthesis by microoganims. Agric. Biol. Chem. 38: (2257-2262).
- Klug, H. L., D. F. Peterson and A. L. Moxon. (1949). Toxicity of selenium analogues of cystine and methionine. Proc. S. Dakota Acad. Sci. 28: (117-120).
- Krell, K. and M. Eisenberg. (1970). The purification and properties of desthiobiotin synthetase. J. Biol. Chem. 245: (6558-6588).
- Martin, R. and B. E. Norcross. (1975). Preparation of cis-3,4-ureyleneselenophane J. Org. Chem. 40: (523-524).
- Mautner, H. G. and W. H. Gunther. (1959). Selenopantethine, a functional analog of pantethine in the Lactobacillus helveticus system. Biochim. Biophys. Acta. 36: (561-562).
- McConnell, K. P., J. L. Hoffman. 1972. Methionine-selenomethio-nine parallels in Escherichia coli polypeptide chain initiation and synthesis. Proc. Soc. Exp. Biol. Med. 148: (638- 641).
- Melvile, D. B. (1954). Biotin sulfoxide. J. Biol. Chem. 208: (495-502).
- Mudd, S. H. and G. L. Cantoni. (1957). Selenomethionine in enzymatic transmethylations. Nature. 180: (1052).
- Nimura, T., T. Suzuki, Y. Sahashi. (1964) a. Studies on the formation of biotin from desthiobiotin and sulfate in Saccharomyces cerevisiae I. On biotin formation from desthiobiobin by washed cell suspension of yeast. J. Vitaminol. 10: (218-223).
- Nimura, T., T. Suzuki and Y. Sahashi. (1964) b. Studies on the formation of biotin from desthiobiotin and sulfate in Saccharomyces cerevisiae II. On sulfur sources of biotin formation by washed cell suspension of yeast. J. Vitaminol. 10: (224-230).
- Nimura, T., T. Suzuki and Y. Sahashi. (1964) c. Studies on the formation of biotin from desthiobiotin and sulfate in Saccharomyces cerevisiae. III . Isotopic studies on biotin formation from destiobiotin and 35s labeled sulfate by washed cell suspension of yeast. J. Vitaminol. 10: (231-236).
- Ogata, K. (1970). Microbial synthesis of desthiobiotin and biotin, Methods in Enzyrool. Vol. XVIII part A pp. (390-395).
- Pai, C. H., H. C. Lichstein, (1965). The biosynthesis of biotin in microoganisms. III. The biosynthesis of (+) biotin from desthiobiotin and its control in Escherichia coli. Biochim. Biophys. Acta. 100: (43-49).
- Saelinger, D. A., J. L. Hoffman and K. P. McConnell. (1972). Biosynthesis of selenobases in transfer RNA by Escherichia coli. J. Mol. Biol. 69: (9-17).
- Saris, L. E. arid M. P. Cava. (1976). Benzo [c]selenophene abase-catalyzed selenotide dehydration. J. Arner. Chem. Soc. 98: (867-868).
- Sebrel, W. H. and R. S. Harris. (1968). The Vitamins. Academic Press. New York. pp. (261-322).
- Sharpless, K. B., and R. L. Lauer. (1973). A mild procedure for the conversion of epoxides to allylic alcohols. J. Arner. Chem. Soc. 95: (2697-2699).
- Shimada, L. (1967). Attempt to label biotin with sulfur-35 by Aspergillus niger. Annu. Rep. Tokyo Coll. Pharm. 17: (219-223).
- Shrift, A. (1954). Sulfur-selenium antagonism. I. Anti-metabolite action of selenate on the growth of Chlorella vulgaris. Amer. J. Bot. 41: (223-230).
- Shrift, A. and E. Kelly, (1962). Adaptation of Escherichia coli to selenate. Nature 195: (732-733).
- Shrift, A. and T. Virupaksha. (1965). Selenoamino acids in selenium accumulating plants. Biochim. Biophys. Acta. 100: (65-75).
- Shrift, A. (1967). Microbiol research with selenium. In: Selenium in Biomedicine Ed O. H. Muth. Avi Publishing Co., Westport, Conn. (241-277).
- Stadtman, T. C. (1973). Selenium biochemistry. Science. 183: (915-922).
- Stevens, R. B. (1974). Mycology Guidebook. University of Washington Press Seattle.
- Stoner, G. L. and M.A. Eisenberg. (1975) a. Purification and properties of 7,8-diaminopelargonic acid aminotransferase. J. Biol. Chem. 250: (4029-4036).
- Stoner, G. L. and M. A. Eisenberg. (1975) b. Biosynthesis of7,8-diaminopelargonic acid from 7-keto-8-arninopelargonic acid and S-·adenosyl L-methionine. J. Biol. Chem. 250: (4037-4043).
- Tuve, T. and H. H. Williams. (1961). Metabolism of selenium by Escherichia coli biosynthesis of selenomethionine. J. Biol. Chem. 236: (597-601).
- Tweedie, J. W. and I. H. Segal. (1970). Specificity of transport processes for sulfur, selenium and molybdenum anions by filametous fungi. Biochim. Biophys. Acta. 196: (95-105).
- Virupaksha, T. and A. Shrift. (1965). Biochemical differences between selenium acculator and non-accumulator Astragalus species. Biochim. Biophys. Acta. 107: (69-80).
- Waller, J. R. and H. C. Lichstein. (1965). Biotin transport and accumulation by cells of Lactobacillus plantarum I. General properties of the system. J. Bacterial. 90: (843-852).
- Waller, J. R. (1970). Increased sensitivity of the micro-biological assay for biotin by Lactobacillus plantarum.Appl. Microbio. 20: (485-491).
- Wei. R. (1970). Assay of avidin. Methods in Enzymol. Vol. XVIII part A. (424-427).
- Weiss, K. F., J. C. Ayres and A. A. Kraft. (1965). Inhibitory action of selenite on Escherichia coli, Proteus vulgaris and Salmonella thompson. J. Bacteriol. 90: (857-862).
- Weissman, G. S. and S. F. Trelease. (1965). Influence of sulfur on the toxicity of selenium to Aspergillus. J. Bot. 42: (489-495).
- Wilson, L. G. and R. S. Bandurski. (1958). Enzymatic reaction involving sulfate, sulfite, selenate and molybdate. J. Biol. Chem. 233: (975-981).
- Wright, L. D., E. Cresson and c. A. Driscoll. (1954). Bioautography of biotin and certain related compounds. Proc. Soc. Exp. Biol. Med. 86: (480-483).
- Yang, H. C., Y. Tani and K. Ogata. (1971). Studies on the metabolism of biotin vitamers by microoganisms. III. Purification and characterization of an enzyme synthesizing the ureido ring of biotin vitamers. Agric. Biol. Chem. 35: (1346-1352).
External links[edit]
This article "Biosynthesis of a Biotin Compound Containing ⁷⁵Se" is from Wikipedia. The list of its authors can be seen in its historical and/or the page Edithistory:Biosynthesis of a Biotin Compound Containing ⁷⁵Se. Articles copied from Draft Namespace on Wikipedia could be seen on the Draft Namespace of Wikipedia and not main one.