You can edit almost every page by Creating an account. Otherwise, see the FAQ.

Cancer vaccine

From EverybodyWiki Bios & Wiki

A cancer vaccine is a vaccine that either treats existing cancer or prevents development of cancer.[1] Vaccines that treat existing cancer are known as therapeutic cancer vaccines or tumor antigen vaccines. Some of the vaccines are "autologous", being prepared from samples taken from the patient, and are specific to that patient.

Some researchers claim that cancerous cells routinely arise and are destroyed by the immune system (immunosurveillance);[2] and that tumors form when the immune system fails to destroy them.[3]

Some types of cancer, such as cervical cancer and liver cancer, are caused by viruses (oncoviruses). Traditional vaccines against those viruses, such as the HPV vaccine[4] and the hepatitis B vaccine, prevent those types of cancer. Other cancers are to some extent caused by bacterial infections (e.g. stomach cancer and Helicobacter pylori[5]). Traditional vaccines against cancer-causing bacteria (oncobacteria) are not further discussed in this article.

Method[edit]

One approach to cancer vaccination is to separate proteins from cancer cells and immunize patients against those proteins as antigens, in the hope of stimulating the immune system to kill the cancer cells. Research on cancer vaccines is underway for treatment of breast, lung, colon, skin, kidney, prostate and other cancers.[6]

Another approach is to generate an immune response in situ in the patient using oncolytic viruses. This approach was used in the drug talimogene laherparepvec, a variant of herpes simplex virus engineered to selectively replicate in tumor tissue and to express the immune stimulatory protein GM-CSF. This enhances the anti-tumor immune response to tumor antigens released following viral lysis and provides a patient-specific vaccine.[7]

Types[edit]

Cancer vaccines can be cell-based, protein- or peptide-based, or gene-based (DNA/RNA).[8]

Cell-based vaccines include tumor cells or tumor cell lysates. Tumor cells from the patient are predicted to contain the greatest spectrum of relevant antigens, but this approach is expensive and often requires too many tumor cells from the patient to be effective.[9] Using a combination of established cancer cell lines that resemble the patient’s tumor can overcome these barriers, but this approach has yet to be effective. Canvaxin, which incorporates three melanoma cell lines, failed phase III clinical trials.[9] Another cell-based vaccine strategy involves autologous dendritic cells (dendritic cells derived from the patient) to which tumor antigens are added. In this strategy, the antigen-presenting dendritic cells directly stimulate T-cells rather than relying on processing of the antigens by native APCs after the vaccine is delivered. The best known dendritic cell vaccine is Sipuleucel-T (Provenge), which only improved survival by four months. The efficacy of dendritic cell vaccines may be limited due to difficulty in getting the cells to migrate to lymph nodes and interact with T-cells.[8][10]

Peptide-based vaccines usually consist of cancer specific-epitopes and often require an adjuvant (for example, GM-CSF) to stimulate the immune system and enhance antigenicity. Examples of these epitopes include Her2 peptides, such as GP2 and NeuVax. However, this approach requires MHC profiling of the patient because of MHC restriction.[11] The need for MHC profile selection can be overcome by using longer peptides (“synthetic long peptides”) or purified protein, which are then processed into epitopes by APCs.[11]

Gene-based vaccines are composed of the nucleic acid (DNA/RNA) encoding for the gene. The gene is then expressed in APCs and the resulting protein product is processed into epitopes. Delivery of the gene is particularly challenging for this type of vaccine.[8]

References[edit]

  1. Kwok M, Fritsch EF, Wu CJ (January 2021). "Cancer and COVID-19: On the Quest for Effective Vaccines". Blood Cancer Discovery. 2 (1): 13–18. doi:10.1158/2643-3230.BCD-20-0205. PMID 34661150 Check |pmid= value (help).
  2. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ, Schreiber RD (April 2001). "IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity". Nature. 410 (6832): 1107–1111. Bibcode:2001Natur.410.1107S. doi:10.1038/35074122. PMID 11323675. Unknown parameter |s2cid= ignored (help)
  3. Dunn GP, Old LJ, Schreiber RD (2004). "The three Es of cancer immunoediting". Annual Review of Immunology. 22 (i): 329–360. doi:10.1146/annurev.immunol.22.012703.104803. PMID 15032581.
  4. Babu RA, Kumar KK, Reddy GS, Anuradha C (2010). "Cancer Vaccine : A Review" (PDF). Journal of Orofacial Sciences. 2 (3): 77–82. Archived from the original (PDF) on 2019-06-30. Unknown parameter |url-status= ignored (help)
  5. "Oral vaccine could fight source of stomach cancers". Vaccine News Reports. Archived from the original on 2015-04-24. Retrieved 2010-06-22. Unknown parameter |url-status= ignored (help)
  6. Giarelli E (October 2007). "Cancer vaccines: a new frontier in prevention and treatment". Oncology. 21 (11 Suppl Nurse Ed): 11–7, discussion 18. PMID 18154203.
  7. Amgen press release. Amgen announces top-line results of phase 3 talimogene laherparepvec trial in melanoma. Mar 19, 2013. Available here
  8. 8.0 8.1 8.2 Lollini PL, Cavallo F, Nanni P, Quaglino E (June 2015). "The Promise of Preventive Cancer Vaccines". Vaccines. 3 (2): 467–489. doi:10.3390/vaccines3020467. PMC 4494347. PMID 26343198.
  9. 9.0 9.1 Tagliamonte M, Petrizzo A, Tornesello ML, Buonaguro FM, Buonaguro L (2014-10-31). "Antigen-specific vaccines for cancer treatment". Human Vaccines & Immunotherapeutics. 10 (11): 3332–3346. doi:10.4161/21645515.2014.973317. PMC 4514024. PMID 25483639.
  10. "Personalized Cancer Vaccine". Retrieved 2023-06-26.
  11. 11.0 11.1 Pol J, Bloy N, Buqué A, Eggermont A, Cremer I, Sautès-Fridman C, et al. (April 2015). "Trial Watch: Peptide-based anticancer vaccines". Oncoimmunology. 4 (4): e974411. doi:10.4161/2162402X.2014.974411. PMC 4485775. PMID 26137405.