Welcome to EverybodyWiki ! Nuvola apps kgpg.png Sign in or create an account to improve, watchlist or create an article like a company page or a bio (yours ?)...

Quantum field of magnet

From EverybodyWiki Bios & Wiki
Jump to navigation Jump to search

Quantum field of a magnet, side view, as shown by the superparamagnetic ferrolens.[1][2][3] The inner theta θ pattern, shows the lowest potential flux of the field of the magnet. Its Bloch domain wall is indicated at the middle.

Quantum field of a magnet or else called Quantum Magnet[4] refers to the characteristic field pattern of a magnet shown when observed with a superparamagnetic ferrolens.[1][2][3][5]

Classical ferromagnetic iron filings visualization method of the field of a magnet.

The quantum field image of magnets shown, includes also visual information about their domain wall or else Bloch wall which is considered as a quantum effect therefore the name "Quantum field of magnet" is given when it is observed via the ferrolens. Other alternative magnetic field visualization methods using ferromagnetism are not showing this kind of information.[1][6]

Relative hard ferromagnetic materials and macroscopic sensors with a large magnetic anisotropy[7][8] K and very low magnetic reluctance like iron when used in magnetic field mapping applications show the highest magnetic potential imprint of the field of a magnet.

However, there is a second existing at the quantum level, lowest, ground state (i.e. domain wall) magnetic potential field pattern around every magnet where magnetic flux circulates on two distinct and separate hemispheres as shown by the ferrolens.[1][2][3] Each magnetic hemisphere is residing on each pole of the magnet. The two hemispheres are placed back to back and joined tangent to the domain wall of the magnet, resembling the Greek letter theta θ. Gyromagnetic ratio γ of magnet is preserved in this new field geometry observed since it consists essentially of two joined hemispheres making up a sphere.

Soft magnetic materials and quantum, nanosized sensors with lower magnetic anisotropy[9][10] in a superparamagnetic configuration like a magnetite Fe3O4 diluted in an hydrocarbon based or water based carrier solution, thin film of ferrofluid, are able to show as demonstrated, in real-time the quantum field image of a magnet. In general the Quantum Field of Magnets (QFM) is attributed to the Quantum Decoherence phenomenon[4].

References[edit | edit source]

  1. 1.0 1.1 1.2 1.3 Markoulakis, Emmanouil; Konstantaras, Antonios; Antonidakis, Emmanuel (2018). "The quantum field of a magnet shown by a nanomagnetic ferrolens". Journal of Magnetism and Magnetic Materials. 466: 252–259. arXiv:1807.08751. doi:10.1016/j.jmmm.2018.07.012. ISSN 0304-8853.
  2. 2.0 2.1 2.2 Michael Snyder and Johnathan Frederick (June 18, 2008). "Photonic Dipole Contours of a Ferrofluid Hele-Shaw Cell". Chrysalis: The Murray State University Journal of Undergraduate Research.
  3. 3.0 3.1 3.2 Tufaile, Alberto; Vanderelli, Timm A.; Tufaile, Adriana Pedrosa Biscaia (2017). "Light Polarization Using Ferrofluids and Magnetic Fields". Advances in Condensed Matter Physics. 2017: 1–7. doi:10.1155/2017/2583717. ISSN 1687-8108.
  4. 4.0 4.1 E. Markoulakis, A. Konstantaras, J. Chatzakis, R. Iyer, E. Antonidakis, Real time observation of a stationary magneton, Results in Physics, 15(C), 2019, 102793, arxiv:1911.05735, doi: https://doi.org/10.1016/j.rinp.2019.102793.
  5. Metlov, Konstantin L. (2005). "Cross-Tie Domain Wall Ground State in Thin Films". Journal of Low Temperature Physics. 139 (1): 207–219. doi:10.1007/s10909-005-3924-1. ISSN 0022-2291.
  6. Peshkin, Murray; Talmi, Igal; Tassie, Lindsay J (1961). "The quantum mechanical effects of magnetic fields confined to inaccessible regions". Annals of Physics. 12 (3): 426–435. Bibcode:1961AnPhy..12..426P. doi:10.1016/0003-4916(61)90069-0. ISSN 0003-4916.
  7. Hanson, M.; Johansson, C.; Morup, S. (1993). "The influence of magnetic anisotropy on the magnetization of small ferromagnetic particles". Journal of Physics: Condensed Matter. 5 (6): 725. Bibcode:1993JPCM....5..725H. doi:10.1088/0953-8984/5/6/009. ISSN 0953-8984.
  8. Graham, C. D. (1958). "Magnetocrystalline Anisotropy Constants of Iron at Room Temperature and Below". Physical Review. 112 (4): 1117–1120. Bibcode:1958PhRv..112.1117G. doi:10.1103/PhysRev.112.1117.
  9. Chantrell, R.W.; Tanner, B.K.; Hoon, S.R. (1983). "Determination of the magnetic anisotropy of ferrofluids from torque magnetometry data". Journal of Magnetism and Magnetic Materials. 38 (1): 83–92. Bibcode:1983JMMM...38...83C. doi:10.1016/0304-8853(83)90106-3. ISSN 0304-8853.
  10. Řezníček, R; Chlan, V; Štěpánková, H; Novák, P; Maryško, M (2012-01-06). "Magnetocrystalline anisotropy of magnetite". Journal of Physics: Condensed Matter. 24 (5): 055501. Bibcode:2012JPCM...24e5501R. doi:10.1088/0953-8984/24/5/055501. ISSN 0953-8984.

Compte Twitter EverybodyWiki Follow us on https://twitter.com/EverybodyWiki !