Semiabelian group (Galois theory)
Script error: No such module "Draft topics". Script error: No such module "AfC topic". Script error: No such module "AfC submission catcheck".
In Galois theory, the Semibelian group is a groups associated with the inverse Galois problem or the embedding problem which is a generalization of the former, introduce by Thompson (1984) (called "semiabelian" by Matzat (1987)[1]).
Definition[edit]
Definition:[2][3][4][5] A finite group G is called semiabelian if and only if there exists a sequence
such that is a homomorphic image of a semidirect product with a finite abelian group (.).
The family of (finite) semiabelian groups is the minimal family which contains the trivial group and is closed under the following operations:[6][7]
- If acts on a finite abelian group , then ;
- If and is a normal subgroup, then .
Class of finite groups G with regular realizations over is closed under taking semidirect products with abelian kernel, and it is also closed under quotients. The semiabelian group is the smallest class of finite groups that have both of the these closure properties as mentioned above.[8][9]
Example[edit]
A non-trivial finite group G the followsing the are equivalent (Dentzer 1995, Theorm 2.3.) :[10][11]
- (i) G is semiabelian.
- (ii) G posses an abelian and a some proper semiabelian subgroup U with .
- Therefore G is an epimorphism of a split group extension with abelian kernel.[12]
- Finite semiabelian groups possess G-realization[13][14] over any field and therefore are Galois groups over every Hilbertian field.[15]
See also[edit]
- Inverse Galois problem
- Embedding problem
- Minimal ramification problem (Inverse Galois problem)
- p-group
- Galois extension
Note[edit]
- ↑ (Stoll 1995)
- ↑ (Dentzer 1995, Definition 2.1)
- ↑ (Kisilevsky, Neftin & Sonn 2010)
- ↑ (Kisilevsky & Sonn 2010)
- ↑ (Meghan 2014)
- ↑ (Thompson 1984)
- ↑ (Neftin 2009, Definition 1.1.)
- ↑ (Blum-Smith 2014)
- ↑ (Legrand 2022)
- ↑ (Matzat 1995, §6. Split extensions with Abelian kernel, Poopositein 4)
- ↑ (Neftin 2011)
- ↑ (Schmid 2018)
- ↑ (Malle & Matzat 1999, p. 33)
- ↑ (Matzat 1995, p. 41)
- ↑ (Malle & Matzat 1999, p. 300)
References[edit]
- De Witt, Meghan (2014). "Minimal ramification and the inverse Galois problem over the rational function field Fp(t)". Journal of Number Theory. 143: 62–81. doi:10.1016/j.jnt.2014.03.017. Unknown parameter
|s2cid=
ignored (help) - Dentzer, Ralf (1995). "On geometric embedding problems and semiabelian groups". Manuscripta Mathematica. 86: 199–216. doi:10.1007/BF02567989. Zbl 0836.12002. Unknown parameter
|s2cid=
ignored (help) - Kisilevsky, Hershy; Neftin, Danny; Sonn, Jack (2010). "On the minimal ramification problem for semiabelian groups". Algebra & Number Theory. 4 (8): 1077–1090. doi:10.2140/ant.2010.4.1077. Zbl 1221.11218. Unknown parameter
|s2cid=
ignored (help) - Kisilevsky, Hershy; Sonn, Jack (2010). "On the minimal ramification problem for ℓ-groups". Compositio Mathematica. 146 (3): 599–606. doi:10.1112/S0010437X10004719. Unknown parameter
|s2cid=
ignored (help) - Legrand, François (2022). "On finite embedding problems with abelian kernels". Journal of Algebra. 595: 633–659. arXiv:2112.12170. doi:10.1016/j.jalgebra.2021.12.026. Unknown parameter
|s2cid=
ignored (help) - Matzat, Bernd Heinrich (1987). "Einbettungsprobleme Über Hilbertkörpern". Konstruktive Galoistheorie. Lecture Notes in Mathematics (in Deutsch). 1284. pp. 215–268. doi:10.1007/BFb0098329. ISBN 978-3-540-18444-7. Search this book on
- Matzat, B. Heinrich (1991). "Der Kenntnisstand in der konstruktiven Galoisschen Theorie". Representation Theory of Finite Groups and Finite-Dimensional Algebras (in Deutsch). pp. 65–98. doi:10.1007/978-3-0348-8658-1_4. ISBN 978-3-0348-9720-4. Search this book on
- Malle, Gunter; Matzat, B. Heinrich (1999). "Embedding Problems". Inverse Galois Theory. Springer Monographs in Mathematics. pp. 263–360. doi:10.1007/978-3-662-12123-8_4. ISBN 978-3-662-12123-8. Search this book on
- Matzat, B. H. (1995). "Parametric solutions of embedding problems". Recent Developments in the Inverse Galois Problem. Contemporary Mathematics. 186. pp. 33–50. doi:10.1090/conm/186/02174. ISBN 9780821802991. Search this book on
- Neftin, Danny (2011). "On semiabelian p-groups". Journal of Algebra. 344: 60–69. arXiv:0908.1472. doi:10.1016/j.jalgebra.2011.07.016. Unknown parameter
|s2cid=
ignored (help)- Neftin, Danny (2009). "On semiabelian p-groups". arXiv:0908.1472v2 [math.GR].
- Stoll, Michael (1995). "Construction of semiabelian Galois extensions". Glasgow Mathematical Journal. 37: 99–104. doi:10.1017/S0017089500030433. Unknown parameter
|s2cid=
ignored (help) - Schmid, Peter (2018). "Realizing 2-groups as Galois groups following Shafarevich and Serre" (PDF). Algebra & Number Theory. 12 (10): 2387–2401. doi:10.2140/ant.2018.12.2387. Unknown parameter
|s2cid=
ignored (help) - Thompson, John G (1984). "Some finite groups which appear as gal L/K, where K ⊆ Q(μn)". Journal of Algebra. 89 (2): 437–499. doi:10.1016/0021-8693(84)90228-x. ISSN 0021-8693.
Further reading[edit]
- Saltman, David J. (1982). "Generic Galois extensions and problems in field theory". Advances in Mathematics. 43 (3): 250–283. doi:10.1016/0001-8708(82)90036-6.
External link[edit]
- Blum-Smith, Benjamin (2014). "Semiabelian Groups and the Inverse Galois Problem". Courant Institute of Mathematical Sciences.
- "Inverse Galois Problem (Lecture 3) in PCMI 2021 Graduate Summer School Program - Number Theory Informed by Computation - July 26-30, 2021". Archived from the original on 2023-02-16.
This article "Semiabelian group (Galois theory)" is from Wikipedia. The list of its authors can be seen in its historical and/or the page Edithistory:Semiabelian group (Galois theory). Articles copied from Draft Namespace on Wikipedia could be seen on the Draft Namespace of Wikipedia and not main one.
This page exists already on Wikipedia. |