Welcome to EverybodyWiki ! Nuvola apps kgpg.png Log in or create an account to improve, watchlist or create an article like a company page or a bio (yours ?)...

Tochnog Professional Company

From EverybodyWiki Bios & Wiki
Tochnog Professional Company
Type
Consultancy
Founded 📆
Founder 👔Dennis Roddeman
Area served 🗺️
Members
Number of employees
Websitewww.tochnogprofessional.nl
address
telephone


Tochnog Professional is a Finite Element Analysis (FEA) solver developed and distributed by Tochnog Professional Company. It can be used for free, both for academic work and commercially. The source is not made publicly available however. The software is specializes in geotechnical applications, but also has options for civil engineering and mechanical engineering. Input data is provided by means of an input file, containing all information that is needed for performing a calculation. Parts of the input file can be generated by external pre-processors. Output is generated by several generated output files. These can either be used in external post-processors, or the files can directly be used for the interpretation of calculation results.

History[edit]

Development of the Tochnog Professional program started 1997 by Dennis Roddeman. The programming is done completely in the c++ programming language. The program is setup as a batch program, and should be started from the command line. In 2019 Dennis Roddeman started Tochnog Professional Company, which presently is the owner of the Tochnog Professional program. Since 2019 the program is listed on the soilmodels research site[1][2] with over 2000 research members both as generic purpose program and also as incremental driver. It is listed in the geotechpedia geotechnics programs overview site. Many peer reviewed scientific papers discuss usage of the Tochnog Professional program, see the reference list below.

Tochnog Professional functionality[edit]

- Calculation domains

  • 1D, 2D, 3D, axisymmetric and spherical.

- Element types

  • Linear, quadratic and cubic elements.
  • Springs, beams, trusses, interfaces, boundary elements.
  • Automatic distribution trusses (no-slip reinforcement bars).

- Equation types

  • Material stress, groundwater, temperature calculations.
  • Full coupling between these different analysis types.

- Material stresses

  • Linear elasticity, elasto-plasticity, visco-plasticity[3]
  • Many built-in hypoplasticity laws.
  • Multi laminate plasticity model.
  • Cracking models.
  • Mesh independent softening with non local visco plasticity.
  • All parameters can depend on time and solution fields.

- Groundwater analysis

  • Saturated and non-saturated.
  • Consolidation analysis, fully coupled.
  • Multiple phreatic levels, flux calculations, etc.
  • Hydraulic safety factors (piping, lifting).

- Temperature

  • Conductivity, capacity, environmental convection and radiation.

- Boundary conditions and loads

  • Mesh independent boundary conditions and loads

- Time stepping types

  • Static, quasi-static and dynamic.

- Phased analysis

  • Excavations
  • Layer depositing
  • Material change of elements over time
  • Boundary conditions changes, etc.

- Stability analysis

  • Stability safety factors with parameter reduction (phi-c reduction or any other parameter reduction).
  • Local mesh refinement based on calculation results (automatic restart after refinements).
  • Stability safety factors with classical methods.
  • Stochastic distribution of all material parameters for risk analysis (Monte Carlo simulations).

- Solvers

  • Shared memory systems pluralization.
  • Direct and iterative equations solvers.

- Pre- and postprocessing

  • Interface with external GID CIMNE, GMSH and Paraview.
  • History files and data-versus-data columns for Gnuplot, Excel etc.

Example calculations[edit]

Tochnog Professional Company[edit]

Tochnog Professional Company is started by and also presently owned by Dennis Roddeman and Silvia Imposimato.

References[edit]

  1. G. Gudehus, A. Amorosi, A. Gens, I. Herle, D. Kolymbas, D. Masin, D. Muir Wood, R. Nova, R., A. Niemunis, M. Pastor, C. Tamagnini, G. and Viggiani (2008). "The soilmodels.info project". International Journal for Numerical and Analytical Methods in Geomechanics. 32(12): 1571–1572.CS1 maint: Multiple names: authors list (link)
  2. D. Masin (2017). "Introduction of new SoilModels project". 19th ICSMGE. Seoul, Korea.
  3. C. di Prisco, S. Imposimato (1996). "Time dependent mechanical behaviour of loose sands". Mech. of Cohesive-Frictional Materials. 1: 45–73.
  4. A. Murianni, C. di Prisco, A. Federico (2013). "Numerical stability of non-local viscoplastic FEM analyses for the study of localisation processes". Geomechanics and Geoengineering. 8(4): 215–228.CS1 maint: Multiple names: authors list (link)
  5. B. Bienen, S. Stanier, C. Vulpe and D. Masin (2014). "Interface enabling constitutive models coded as user materials to be employed in explicit analysis". Research report No. 14756. Perth, Australia: Centre for Offshore Foundation Systems, The University of Western Australia.CS1 maint: Multiple names: authors list (link)
  6. T. Janda and D.Masin (2017). "General method for simulating laboratory tests with constitutive models for geomechanics". International Journal for Numerical and Analytical Methods in Geomechanics. 41(2): 304–312.
  7. Q.J. Ma, C.W. Ng, D. Masin and C. Zhou (2017). "An approach for modelling volume change of fine-grained soil subjected to thermal cycles". Canadian Geotechnical Journal. 54(6): 896–901.CS1 maint: Multiple names: authors list (link)
  8. D. Masin (2013). "Clay hypoplasticity with explicitly defined asymptotic states". Acta Geotechnica. 8(5): 481–496.
  9. D. Masin (2014). "Clay hypoplasticity model including stiffness anisotropy". Geotechnique. 64(3): 232–238.
  10. D. Masin (2015). "Part 4: Determination of material parameters". PhD course "Hypoplasticity for Practical Applications" handouts.
  11. D. Masin (2017). "Presentation on applications of hypoplasticity, various case studies". Oslo, Norway: Presentation delivered at Norwegian Geotechnical Institute.
  12. D. Masin (2017). "Presentation on hypoplasticity modelling of cyclic and static response of offshore foundations". Oslo, Norway: Presentation delivered at Norwegian Geotechnical Institute.
  13. H. Stutz, D. Masin and F. Wuttke (2016). "Enhancement of a hypoplastic model for granular soil-structure interface behaviour". Acta Geotechnica. 11(6): 1249–1261.
  14. H. Stutz, D. Masin, A. Sattari and F. Wuttke (2017). "A general approach to model interfaces using existing soil constitutive models application to hypoplasticity". Computers and Geotechnics. 87: 115–127.CS1 maint: Multiple names: authors list (link)
  15. Oliver Reul, Hayo Haebler, Gerd Remmel, Michael Starzl (2007). "Vom SGZ-Bank Hochhaus zum Parktower Gruendungstechnische Aspekte eines Bauwerks im Wandel" (PDF). http://www.cdmsmith.com/en-EU: Pfahl-Symposium 2007, At Braunschweig.CS1 maint: Multiple names: authors list (link)
  16. C. di Prisco (2012). "Cyclic Mechanical Response of Rigid Bodies Interacting With Sand Strata Mechanical". Behaviour of Soils under Environmentally Induced Cyclic Loads, Part of the CISM Courses and Lectures book series CISM. 534: 363–398.
  17. D. Coronelli, C. di Prisco, F. Pisano, S. Imposimato, S. Ghezzi, M. Pesconi (2014). "The Tiburio of the Cathedral of Milan: structural analysis of the construction & 20th century foundation settlements". London, U.K.: Int. Conf. Structural Faults and Repair.CS1 maint: Multiple names: authors list (link)
  18. C. di Prisco, S. Imposimato, P. Rimoldi, M. Vecchiotti (2001). "Numerical analysis of rigid shallow foundations on geogrid reinforced soil strata". proc. Int. Symposium on earth reinforcement,14-16 november 2001. Fukuoka/Kyushu, Japan: edited by Hidetoshi Ochiai et al. -Lisse, Balkema. 1: 703–706.CS1 maint: Multiple names: authors list (link)
  19. Dipl.-Ing. Christian Schwab (2016). "Calculation of pile group reduction factors and foundation springs for a cable-stayed bridge" (PDF). Mainz, Germany: Geolink Geotechnics.
  20. Dipl.-Ing. Christian Schwab (2016). "Hypoplastic back-calculation of settlements for a digestion tank" (PDF). Mainz, Germany: Geolink Geotechnics.
  21. Dipl.-Ing. Christian Schwab (2016). "Numerical calculation of NATM-tunneling with staged-construction" (PDF). Mainz, Germany: Geolink Geotechnics.
  22. "Horizontal Pile Load Testing" (PDF). http://www.ibes-gmbh.de: IBES Baugrundinstitut GmbH, Neustadt/Weinstrae, Germany.
  23. S. Imposimato (2002). "Analisi numerica della realizzazione di uno scavo nel terreno sostenuto da una parancola (Numerical analysis of soil excavation with a sheet pile retaining wall)". Rivista Italiana di Geotecnica. 2: 41–65.
  24. J. Dijkstra, supervisor Prof. A.F. van Tol (2009). "On the Modelling of Pile installation". PhD Thesis. Delft, The Netherlands: Delft University of Technology.
  25. A. Murianni, O. Zanoli, E.J. Parker (2015). "Evaluation of pipe-soil interaction in liquefied soil". Frontiers in Offshore Geotechnics III. London, U.K.: Meyer Ed. Taylor & Francis Group: 429–434. ISBN 978-1-138-02848-7.CS1 maint: Multiple names: authors list (link)
  26. E. Conte, F. Silvestri, A. Troncone (2010). "Stability analysis of slopes in soils with strain-softening behaviour". Computers and Geotechnics. 37: 710–722.CS1 maint: Multiple names: authors list (link)
  27. E. Conte, A. Donato, A. Troncone (2013). "Progressive failure analysis for shallow foundation on soils with strain-softening behaviour". Computers and Geotechnics. 54: 117–124.CS1 maint: Multiple names: authors list (link)
  28. A. Troncone (2005). "Numerical analysis of a landslide in soils with strain-softening behaviour". Géotechnique. 55: 585–596.
  29. A. Troncone, E. Conte, A. Donato (2014). "Two and three-dimensional numerical analysis of the progressive failure that occurred in an excavation-induced landslide". Engineeering Geology. 183: 265–275.CS1 maint: Multiple names: authors list (link)
  30. A. Troncone, E. Conte, A. Donato (2016). "Three-dimensional Finite Element Analysis of the Senise Landslide". VI Italian Conference of Researchers in Geotechnical Engineering, CNRIG2016 - Geotechnical Engineering in Multidisciplinary Research: from Microscale to Regional Scale, 22-23 September 2016. Bologna, Italy: Procedia Engineering. 158: 212–217.CS1 maint: Multiple names: authors list (link)
  31. G. Crosta, F. De Blasio, M. De Caro, G. Volpi, S. Imposimato & D. Roddeman (2017). "Modes of propagation and deposition of granular flows onto an erodible substrate: experimental, analytical, and numerical study". Landslides. 14(1): 47–68. doi:10.1007/s10346-016-0697-3.CS1 maint: Multiple names: authors list (link)
  32. G. Crosta, S. Imposimato & D. Roddeman (2016). "Landslide Spreading, Impulse Water Waves and Modelling of the Vajont Rockslide". Rock Mechanics and Rock Engineering. 49(6): 2413–2436. doi:10.1007/s00603-015-0769-z.
  33. G. Crosta, S. Imposimato & D. Roddeman (2015). "Granular flows on erodible and non erodible inclines inclines". Granular Matter. 17(5): 667–685. doi:10.1007/s10035-015-0587-8.
  34. G. Crosta, F. De Blasio, M. Locatelli, S. Imposimato & D. Roddeman (2015). Landslides falling onto a shallow erodible substrate or water layer: An experimental and numerical approach. IOP Conference Series: Earth and Environmental Science. 26. Institute of Physics Publishing.CS1 maint: Multiple names: authors list (link) Search this book on Amazon.com Logo.png
  35. G. Crosta, S. Imposimato & D. Roddeman (2013). Monitoring and modelling of Rock Slides and Rock Avalanches (PDF). International Conference on Vajont - 1963-2013 - Thoughts and analyses after 50 years since the catastrophic landslide Padua, Italy - 8-10 October 2013, Italian Journal of Engineering Geology and Environment. 6. Roma, Italy: Universita’ della Sapienza. doi:10.4408/IJEGE.2013-06.B-01. Search this book on Amazon.com Logo.png
  36. G. Crosta, S. Imposimato & D. Roddeman (2013). "Interaction of landslide mass and water resulting in impulse waves". Landslide Science and Practice. Springer International. 5: 49–56. ISBN 978-3-642-31427-8.
  37. G.B. Crosta, S. Imposimato, D. Roddeman & P. Frattini (2011). "Effects of the interaction between rock avalanche and substrate material" (PDF). Landslide Science and Practice. Göttingen, Germany: Copernicus GmbH: 8475–8475.CS1 maint: Multiple names: authors list (link)
  38. G. Crosta, S. Imposimato & D. Roddeman (2009). "Numerical modeling of 2-D granular step collapse on erodible and non erodible surface". Journal of Geophysical Research: Space Physics. 114(3). doi:10.1029/2008JF001186.
  39. G. Crosta, S. Imposimato & D. Roddeman (2009). "Numerical modelling of entrainment/deposition in rock and debris-avalanches". Engineering Geology. 109(1-2): 135–145. doi:10.1016/j.enggeo.2008.10.004.
  40. G.B. Crosta, S. Imposimato, D. Roddeman, S.C. Chiesa & F. Moia (2005). "Small fast-moving flow-like landslides in volcanic deposits: The 2001 Las Colinas Landslide (El Salvador)". Engineering Geology. 79(3-4): 185–214. doi:10.1016/j.enggeo.2005.01.014.CS1 maint: Multiple names: authors list (link)
  41. G.B. Crosta, S. Imposimato & D. Roddeman (2003). "Numerical modelling of large landslides stability and runout" (PDF). Natural Hazards and Earth System Sciences. 3(6): 523–538.
  42. G.B. Crosta, F. Calvetti, S. Imposimato, D. Roddeman, P. Frattini & F. Agliardi (2001). CNR, ed. Granular flows and numerical modelling of landslides (PDF). Italy. pp. 1–71.CS1 maint: Multiple names: authors list (link) Search this book on Amazon.com Logo.png
  43. G. Crosta, S. Imposimato, D. Roddeman & P. Frattini (2013). Springer, ed. "On Controls of Flow-Like Landslide Evolution by an Erodible Layer". Margottini, P. Canuti, & K. Sassa: Landslide Science and Practice. Berlin, Germany: 263–270. ISBN 978-3-642-31309-7.CS1 maint: Multiple names: authors list (link)
  44. D. Porta, supervisor Prof. Carlo G. Lai (2014). "Analisi FEM della propagazione della rottura di faglia in condizioni di campo libero". MSc Thesis. Pavia, Italy: Universita’ degli Studi di Pavia, Facolta’ di Ingegneria.
  45. J. Hleibieh, D. Wegener & I. Herle (2014). "Numerical simulation of a tunnel surrounded by sand under earthquake using a hypoplastic model". Acta Geotechnica. 9(4): 631–640.
  46. R. Nova (2013). Soil Mechanics. John Wiley & Sons. doi:10.1002/9781118587058. ISBN 9781848211025. Search this book on Amazon.com Logo.png
  47. J. Hleibieh, I. Herle (2019). "Numerische Bestimmung der Standsicherheit von Böschungen unter Erdbebeneinwirkung am Beispiel eines Erddamms im Zentrifugenversuch". Geotechnik. 42(2): 76–87.
  48. J. Hleibieh, I. Herle (2019). "The performance of a hypoplastic constitutive model in predictions of centrifuge experiments under earthquake conditions". Soil Dynamics and Earthquake Engineering. 122: 310–317.
  49. X.S. Shi, I. Herle (2016). "Analysis of the compression behavior of artificial lumpy composite materials". International Journal for Numerical and Analytical Methods in Geomechanics. 40(10): 1438–1453.
  50. K. Nitzsche, I. Herle (2014). M. A. Hicks, R. B. J. Brinkgreve & A. Rohe, ed. "Analysis of displacement patterns during an excavation using different constitutive models". Numerical Methods in Geotechnical Engineering. Delft, The Netherlands: Taylor & Francis Group: 777–782.
  51. A. Ali, T. Meier & I. Herle (2011). "Numerical investigation of undrained cavity expansion in fine-grained soils". Acta Geotechnica. 6(1): 31–40.
  52. D. Wegener & I. Herle (2010). "Investigation of shear strain amplitude induced by railroad traffic in soils". In 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. San Diego, U.S.A. 2.06.
  53. M. Arnold & I. Herle (2009). "Comparison of vibrocompaction methods by numerical simulations". International Journal for Numerical and Analytical Methods in Geomechanics. 33(16): 1823–1838.

External links[edit]