You can edit almost every page by Creating an account. Otherwise, see the FAQ.

Bouncing ball dynamics

From EverybodyWiki Bios & Wiki


A bouncing ball on a sinusoidally vibrating table is an example of a chaotic system.[1] In such a system, the motion of the ball is altered by a series of deflections as well as the other forces, such as gravity.

The study of the dynamics of a bouncing ball on a sinusoidally vibrating table is a useful teaching example about the behavior of chaotic systems. In addition to its pedagogical value, the system is also of practical interest in several engineering applications, as well as in basic research.[citation needed]

Notes[edit]

  1. Nicholas B. Tufillaro; Tyler Abbott & Jerermiah Reilly (1992). An Experimental Approach to Nonlinear Dynamics and Chaos. Addison–Wesley. ISBN 0-201-55441-0. Search this book on

References[edit]

  • T. M. Mello and N. B. Tufillaro, "Strange attractors of a bouncing ball," American Journal of Physics 55 (4), 316 (1987).
  • N. B. Tufillaro, "Braid analysis of a bouncing ball," Physical Review E 50 (6), 4509–4522 (1994).
  • N. B. Tufillaro, T. M. Mello, Y. M. Choi, and A. M. Albano, "Period doubling boundaries of a bouncing ball," Journal de Physique 47, 1477 (1986).
  • N. B. Tufillaro and A. M. Albano, "Chaotic dynamics of a bouncing ball," American Journal of Physics 54 (10), 939 (1986).
  • K. Wiesenfeld and N. B. Tufillaro, "Suppression of period doubling in the dynamics of a bouncing ball," Physica 26D, 321 (1987).
  • S. K. Joseph, I. P. Mariño and Miguel A.F. Sanjuán, "Effect of the phase on the dynamics of a perturbed bouncing ball system ", Commun. Nonlinear. Sci. and Numer. Simul",17 (8) 3279 - 3286 (2012)[1].

External links[edit]



This article "Bouncing ball dynamics" is from Wikipedia. The list of its authors can be seen in its historical. Articles copied from Draft Namespace on Wikipedia could be seen on the Draft Namespace of Wikipedia and not main one.