You can edit almost every page by Creating an account. Otherwise, see the FAQ.

x86 instruction listings

From EverybodyWiki Bios & Wiki


The x86 instruction set refers to the set of instructions that x86-compatible microprocessors support. The instructions are usually part of an executable program, often stored as a computer file and executed on the processor.

The x86 instruction set has been extended several times, introducing wider registers and datatypes as well as new functionality.[1]

x86 integer instructions[edit]

Below is the full 8086/8088 instruction set of Intel (81 instructions total). Most if not all of these instructions are available in 32-bit mode; they just operate on 32-bit registers (eax, ebx, etc.) and values instead of their 16-bit (ax, bx, etc.) counterparts. See also x86 assembly language for a quick tutorial for this processor family. The updated instruction set is also grouped according to architecture (i386, i486, i686) and more generally is referred to as (32-bit) x86 and (64-bit) x86-64 (also known as AMD64).

Original 8086/8088 instructions[edit]

Original 8086/8088 instruction set
Instruction Meaning Notes Opcode
AAA ASCII adjust AL after addition used with unpacked binary-coded decimal 0x37
AAD ASCII adjust AX before division 8086/8088 datasheet documents only base 10 version of the AAD instruction (opcode 0xD5 0x0A), but any other base will work. Later Intel's documentation has the generic form too. NEC V20 and V30 (and possibly other NEC V-series CPUs) always use base 10, and ignore the argument, causing a number of incompatibilities 0xD5
AAM ASCII adjust AX after multiplication Only base 10 version (Operand is 0xA) is documented, see notes for AAD 0xD4
AAS ASCII adjust AL after subtraction 0x3F
ADC Add with carry destination = destination + source + carry_flag 0x100x15, 0x800x81/2, 0x820x83/2 (since 80186)
ADD Add (1) r/m += r/imm; (2) r += m/imm; 0x000x05, 0x80/00x81/0, 0x82/00x83/0 (since 80186)
AND Logical AND (1) r/m &= r/imm; (2) r &= m/imm; 0x200x25, 0x800x81/4, 0x820x83/4 (since 80186)
CALL Call procedure push eip; eip points to the instruction directly after the call 0x9A, 0xE8, 0xFF/2, 0xFF/3
CBW Convert byte to word 0x98
CLC Clear carry flag CF = 0; 0xF8
CLD Clear direction flag DF = 0; 0xFC
CLI Clear interrupt flag IF = 0; 0xFA
CMC Complement carry flag 0xF5
CMP Compare operands 0x380x3D, 0x800x81/7, 0x820x83/7 (since 80186)
CMPSB Compare bytes in memory. May be used with a REP prefix to repeat the instruction CX times. 0xA6
CMPSW Compare words. May be used with a REP prefix to repeat the instruction CX times. 0xA7
CWD Convert word to doubleword 0x99
DAA Decimal adjust AL after addition (used with packed binary-coded decimal) 0x27
DAS Decimal adjust AL after subtraction 0x2F
DEC Decrement by 1 0x480x4F, 0xFE/1, 0xFF/1
DIV Unsigned divide (1) AX = DX:AX / r/m; resulting DX = remainder (2) AL = AX / r/m; resulting AH = remainder 0xF7/6, 0xF6/6
ESC Used with floating-point unit 0xD8..0xDF
HLT Enter halt state 0xF4
IDIV Signed divide (1) AX = DX:AX / r/m; resulting DX = remainder (2) AL = AX / r/m; resulting AH = remainder 0xF7/7, 0xF6/7
IMUL Signed multiply in One-operand form (1) DX:AX = AX * r/m; (2) AX = AL * r/m 0x69, 0x6B (both since 80186), 0xF7/5, 0xF6/5, 0x0FAF (since 80386)
IN Input from port (1) AL = port[imm]; (2) AL = port[DX]; (3) AX = port[imm]; (4) AX = port[DX]; 0xE4, 0xE5, 0xEC, 0xED
INC Increment by 1 0x400x47, 0xFE/0, 0xFF/0
INT Call to interrupt 0xCC, 0xCD
INTO Call to interrupt if overflow 0xCE
IRET Return from interrupt 0xCF
Jcc Jump if condition (JA, JAE, JB, JBE, JC, JE, JG, JGE, JL, JLE, JNA, JNAE, JNB, JNBE, JNC, JNE, JNG, JNGE, JNL, JNLE, JNO, JNP, JNS, JNZ, JO, JP, JPE, JPO, JS, JZ) 0x700x7F, 0x0F800x0F8F (since 80386)
JCXZ Jump if CX is zero 0xE3
JMP Jump 0xE90xEB, 0xFF/4, 0xFF/5
LAHF Load FLAGS into AH register 0x9F
LDS Load pointer using DS 0xC5
LEA Load Effective Address 0x8D
LES Load ES with pointer 0xC4
LOCK Assert BUS LOCK# signal (for multiprocessing) 0xF0
LODSB Load string byte. May be used with a REP prefix to repeat the instruction CX times. if (DF==0) AL = *SI++; else AL = *SI--; 0xAC
LODSW Load string word. May be used with a REP prefix to repeat the instruction CX times. if (DF==0) AX = *SI++; else AX = *SI--; 0xAD
LOOP/LOOPx Loop control (LOOPE, LOOPNE, LOOPNZ, LOOPZ) if (x && --CX) goto lbl; 0xE00xE2
MOV Move copies data from one location to another, (1) r/m = r; (2) r = r/m; 0xA0...0xA3
MOVSB Move byte from string to string. May be used with a REP prefix to repeat the instruction CX times.
if (DF==0) 
  *(byte*)DI++ = *(byte*)SI++; 
else 
  *(byte*)DI-- = *(byte*)SI--;
.
0xA4
MOVSW Move word from string to string. May be used with a REP prefix to repeat the instruction CX times.
if (DF==0) 
  *(word*)DI++ = *(word*)SI++; 
else 
  *(word*)DI-- = *(word*)SI--;
0xA5
MUL Unsigned multiply (1) DX:AX = AX * r/m; (2) AX = AL * r/m; 0xF7/4, 0xF6/4
NEG Two's complement negation r/m *= -1; 0xF6/30xF7/3
NOP No operation opcode equivalent to XCHG EAX, EAX 0x90
NOT Negate the operand, logical NOT r/m ^= -1; 0xF6/20xF7/2
OR Logical OR (1) r/m |= r/imm; (2) r |= m/imm; 0x080x0D, 0x800x81/1, 0x820x83/1 (since 80186)
OUT Output to port (1) port[imm] = AL; (2) port[DX] = AL; (3) port[imm] = AX; (4) port[DX] = AX; 0xE6, 0xE7, 0xEE, 0xEF
POP Pop data from stack r/m = *SP++; POP CS (opcode 0x0F) works only on 8086/8088. Later CPUs use 0x0F as a prefix for newer instructions. 0x07, 0x0F(8086/8088 only), 0x17, 0x1F, 0x580x5F, 0x8F/0
POPF Pop FLAGS register from stack FLAGS = *SP++; 0x9D
PUSH Push data onto stack *--SP = r/m; 0x06, 0x0E, 0x16, 0x1E, 0x500x57, 0x68, 0x6A (both since 80186), 0xFF/6
PUSHF Push FLAGS onto stack *--SP = FLAGS; 0x9C
RCL Rotate left (with carry) 0xC00xC1/2 (since 80186), 0xD00xD3/2
RCR Rotate right (with carry) 0xC00xC1/3 (since 80186), 0xD00xD3/3
REPxx Repeat MOVS/STOS/CMPS/LODS/SCAS (REP, REPE, REPNE, REPNZ, REPZ) 0xF2, 0xF3
RET Return from procedure Not a real instruction. The assembler will translate these to a RETN or a RETF depending on the memory model of the target system.
RETN Return from near procedure 0xC2, 0xC3
RETF Return from far procedure 0xCA, 0xCB
ROL Rotate left 0xC00xC1/0 (since 80186), 0xD00xD3/0
ROR Rotate right 0xC00xC1/1 (since 80186), 0xD00xD3/1
SAHF Store AH into FLAGS 0x9E
SAL Shift Arithmetically left (signed shift left) (1) r/m <<= 1; (2) r/m <<= CL; 0xC00xC1/4 (since 80186), 0xD00xD3/4
SAR Shift Arithmetically right (signed shift right) (1) (signed) r/m >>= 1; (2) (signed) r/m >>= CL; 0xC00xC1/7 (since 80186), 0xD00xD3/7
SBB Subtraction with borrow alternative 1-byte encoding of SBB AL, AL is available via undocumented SALC instruction 0x180x1D, 0x800x81/3, 0x820x83/3 (since 80186)
SCASB Compare byte string. May be used with a REP prefix to repeat the instruction CX times. 0xAE
SCASW Compare word string. May be used with a REP prefix to repeat the instruction CX times. 0xAF
SHL Shift left (unsigned shift left) 0xC00xC1/4 (since 80186), 0xD00xD3/4
SHR Shift right (unsigned shift right) 0xC00xC1/5 (since 80186), 0xD00xD3/5
STC Set carry flag CF = 1; 0xF9
STD Set direction flag DF = 1; 0xFD
STI Set interrupt flag IF = 1; 0xFB
STOSB Store byte in string. May be used with a REP prefix to repeat the instruction CX times. if (DF==0) *ES:DI++ = AL; else *ES:DI-- = AL; 0xAA
STOSW Store word in string. May be used with a REP prefix to repeat the instruction CX times. if (DF==0) *ES:DI++ = AX; else *ES:DI-- = AX; 0xAB
SUB Subtraction (1) r/m -= r/imm; (2) r -= m/imm; 0x280x2D, 0x800x81/5, 0x820x83/5 (since 80186)
TEST Logical compare (AND) (1) r/m & r/imm; (2) r & m/imm; 0x84, 0x84, 0xA8, 0xA9, 0xF6/0, 0xF7/0
WAIT Wait until not busy Waits until BUSY# pin is inactive (used with floating-point unit) 0x9B
XCHG Exchange data r :=: r/m; A spinlock typically uses xchg as an atomic operation. (coma bug). 0x86, 0x87, 0x910x97
XLAT Table look-up translation behaves like MOV AL, [BX+AL] 0xD7
XOR Exclusive OR (1) r/m ^= r/imm; (2) r ^= m/imm; 0x300x35, 0x800x81/6, 0x820x83/6 (since 80186)

Added in specific Intel processors[edit]

Added with 80186/80188[edit]

Instruction Opcode Meaning Notes
BOUND 62 /r Check array index against bounds raises software interrupt 5 if test fails
ENTER C8 iw ib Enter stack frame Modifies stack for entry to procedure for high level language. Takes two operands: the amount of storage to be allocated on the stack and the nesting level of the procedure.
INSB/INSW 6C Input from port to string equivalent to:
IN AX, DX
MOV ES:[DI], AX
; adjust DI according to operand size and DF
6D
LEAVE C9 Leave stack frame Releases the local stack storage created by the previous ENTER instruction.
OUTSB/OUTSW 6E Output string to port equivalent to:
MOV AX, DS:[SI]
OUT DX, AX
; adjust SI according to operand size and DF
6F
POPA 61 Pop all general purpose registers from stack equivalent to:
POP DI
POP SI
POP BP
POP AX ; no POP SP here, all it does is ADD SP, 2 (since AX will be overwritten later)
POP BX
POP DX
POP CX
POP AX
PUSHA 60 Push all general purpose registers onto stack equivalent to:
PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH SP ; The value stored is the initial SP value
PUSH BP
PUSH SI
PUSH DI
PUSH immediate 6A ib Push an immediate byte/word value onto the stack example:
PUSH 12h
PUSH 1200h
68 iw
IMUL immediate 6B /r ib Signed and unsigned multiplication of immediate byte/word value example:
IMUL BX,12h
IMUL DX,1200h
IMUL CX, DX, 12h
IMUL BX, SI, 1200h
IMUL DI, word ptr [BX+SI], 12h
IMUL SI, word ptr [BP-4], 1200h

Note that since the lower half is the same for unsigned and signed multiplication, this version of the instruction can be used for unsigned multiplication as well.

69 /r iw
SHL/SHR/SAL/SAR/ROL/ROR/RCL/RCR immediate C0 Rotate/shift bits with an immediate value greater than 1 example:
ROL AX,3
SHR BL,3
C1

Added with 80286[edit]

Instruction Opcode Meaning Notes
ARPL r/m16, r16 63 /r Adjust RPL field of selector Available in 16/32-bit protected mode only.

Causes #UD in Real mode and Virtual 8086 Mode - Windows 95 and OS/2 2.x are known to make extensive use of this #UD to use the 63 opcode as a one-byte breakpoint to transition from Virtual 8086 Mode to kernel mode.[2][3]

CLTS 0F 06 Clear task-switched flag in Machine Status Word.
LAR r,r/m16 0F 02 /r Load access rights byte from the specified segment descriptor Sets ZF=1 if the descriptor could be loaded, ZF=0 otherwise.

32-bit variant of LAR instruction is documented to load undefined data into bits 19:16 of destination register on Intel CPUs.

LSL r,r/m16 0F 03 /r Load segment limit from the specified segment descriptor Sets ZF=1 if the descriptor could be loaded, ZF=0 otherwise.
LGDT m16&32 0F 01 /2 Load Global Descriptor Table Register Each of these instructions loads a 2-part table descriptor. The first part is a 16-bit value, specifying table size in bytes minus 1. The second part is a 32-bit value (64-bit value in 64-bit mode), specifying the linear start address for the table. This address is ANDed with 00FFFFFFh for the 16-bit variants of these instructions.

LIDT can relocate the Interrupt Vector Table in Real Mode as well.

LGDT and LIDT are serializing instructions.

LIDT m16&32 0F 01 /3 Load Interrupt Descriptor Table Register
LLDT r/m16 0F 00 /2 Load Local Descriptor Table Register LLDT and LTR are serializing instructions.
LTR r/m16 0F 00 /3 Load Task Register
LMSW r/m16 0F 01 /6 Load Machine Status Word On 80386 and later, the "Machine Status Word" is the same as the CR0 register, however LMSW can only modify the bottom 4 bits of this register.

LMSW can be used to enter but not leave x86 Protected Mode. On the 80286, it is not possible to leave Protected Mode at all without a CPU reset - on 80386 and later, it is possible to leave Protected Mode, but this requires the use of the 80386-and-later MOV to CR0 instruction.

LMSW is a serializing instruction.

SGDT m16&32 0F 01 /0 Store Global Descriptor Table Register The SGDT,SIDT,SLDT,SMSW,STR were unprivileged on all x86 CPUs from 80286 onwards until the introduction of UMIP in 2017.[4]

This has been a significant security problem for software-based virtualization, since it enables these instructions to be used by a VM guest to detect that it is running inside a VM.[5][6]

The 16-bit variants of the SGDT and SIDT instructions also show a difference between Intel documentation and actual behavior observed on Intel CPUs: as of Intel SDM revision 076, december 2021, the last 8 bits of the descriptor is documented as being written as 0, however observed behavior is that bits 31:24 of the descriptor table address are written instead.[7]

SLDT and SMSW (but not STR) with a 32-bit register argument are documented to set the top 16 bits of the specified register to an undefined value on Intel CPUs.

SIDT m16&32 0F 01 /1 Store Interrupt Descriptor Table Register
SLDT r/m16 0F 00 /0 Store Local Descriptor Table Register
SMSW r/m16 0F 01 /4 Store Machine Status Word
STR r/m16 0F 00 /1 Store Task Register
VERR r/m16 0F 00 /4 Verify a segment for reading Sets ZF=1 if segment can be read, ZF=0 otherwise.
VERW r/m16 0F 00 /5 Verify a segment for writing Sets ZF=1 if segment can be written, ZF=0 otherwise.

On some Intel CPU/microcode combinations from 2019 onwards, the VERW instruction also flushes microarchitectural data buffers. This enables it to be used as part of workarounds for Microarchitectural Data Sampling security vulnerabilities.[8][9]

LOADALL 0F 05 Load all CPU registers, including internal ones such as GDT Undocumented, 80286 only. (A different variant of LOADALL with a different opcode and memory layout exists on 80386.)

Added with 80386[edit]

Instruction Meaning Notes
BSF Bit scan forward BSF and BSR produce undefined results if the source argument is all-0s.
BSR Bit scan reverse
BT Bit test
BTC Bit test and complement Instructions atomic only if LOCK prefix present.
BTR Bit test and reset
BTS Bit test and set
CDQ Convert double-word to quad-word Sign-extends EAX into EDX, forming the quad-word EDX:EAX. Since (I)DIV uses EDX:EAX as its input, CDQ must be called after setting EAX if EDX is not manually initialized (as in 64/32 division) before (I)DIV.
CMPSD Compare string double-word Compares ES:[(E)DI] with DS:[(E)SI] and increments or decrements both (E)DI and (E)SI, depending on DF; can be prefixed with REP
CWDE Convert word to double-word Unlike CWD, CWDE sign-extends AX to EAX instead of AX to DX:AX
IBTS Insert Bit String Discontinued with B1 step of 80386.
IMUL Two-operand form of IMUL: Signed and Unsigned Allows to multiply two registers directly, storing the partial (truncated) lower bit result. Since the lower half is the same for unsigned and signed multiplication, this version of the instruction can be used for unsigned multiplication as well
INSD Input from port to string double-word *(long)ES:EDI±± = port[DX]; (±± depends on DF, ES: cannot be overridden). Can be prefixed with REP.
IRETx Interrupt return; D suffix means 32-bit return, F suffix means do not generate epilogue code (i.e. LEAVE instruction) Use IRETD rather than IRET in 32-bit situations
Jxx (near) Jump conditionally Conditional near jump instructions for all 8086 Jxx short jump instructions
JECXZ Jump if ECX is zero
LFS, LGS Load far pointer
LSS Load stack segment and register Normally used to update both SS and SP at the same time.
LODSD Load string double-word EAX = *DS:(E)SI±±; (±± depends on DF, DS: can be overridden); can be prefixed with REP
LOOPW, LOOPccW Loop, conditional loop Same as LOOP, LOOPcc for earlier processors
LOOPD, LOOPccD Loop while equal if (cc && --ECX) goto lbl;, cc = Z(ero), E(qual), NonZero, N(on)E(qual)
MOV to/from CR/DR/TR Move to/from special registers CR=control registers, DR=debug registers, TR=test registers (up to 80486)
MOVSD Move string double-word *(dword*)ES:EDI±± = *(dword*)ESI±±; (±± depends on DF); can be prefixed with REP
MOVSX Move with sign-extension (long)r = (signed char) r/m; and similar
MOVZX Move with zero-extension (long)r = (unsigned char) r/m; and similar
OUTSD Output to port from string double-word port[DX] = *(long*)DS:ESI±±; (±± depends on DF, DS: can be overridden); can be prefixed with REP.
POPAD Pop all double-word (32-bit) registers from stack Does not pop register ESP off of stack
POPFD Pop data into EFLAGS register
PUSHAD Push all double-word (32-bit) registers onto stack
PUSHFD Push EFLAGS register onto stack
PUSHD Push a double-word (32-bit) value onto stack
SCASD Scan string data double-word Compares ES:[(E)DI] with EAX and increments or decrements (E)DI, depending on DF; can be prefixed with REP
SETcc Set byte to one on condition, zero otherwise (SETA, SETAE, SETB, SETBE, SETC, SETE, SETG, SETGE, SETL, SETLE, SETNA, SETNAE, SETNB, SETNBE, SETNC, SETNE, SETNG, SETNGE, SETNL, SETNLE, SETNO, SETNP, SETNS, SETNZ, SETO, SETP, SETPE, SETPO, SETS, SETZ)
SHLD Shift left double r1 = r1<<CL r2>>(register_width - CL); Instead of CL, 8-bit immediate can be used.
SHRD Shift right double r1 = r1>>CL r2<<(register_width - CL); Instead of CL, 8-bit immediate can be used.

SHLD and SHRD with 16-bit arguments and a shift-amount greater than 16 produce undefined results. (Actual results differ between different Intel CPUs, with at least three different behaviors known.[10])

STOSD Store string double-word *ES:EDI±± = EAX; (±± depends on DF, ES cannot be overridden); can be prefixed with REP
XBTS Extract Bit String Discontinued with B1 step of 80386.

Used by software mainly for detection of the buggy[11] B0 stepping of the 80386. Microsoft Windows (v2.01 and later) will attempt to run the XBTS instruction as part of its CPU detection if CPUID is not present, and will refuse to boot if XBTS is found to be working.[12]

Compared to earlier sets, the 80386 instruction set also adds opcodes with different parameter combinations for the following instructions: BOUND, IMUL, LDS, LES, MOV, POP, PUSH and prefix opcodes for FS and GS segment overrides.

Added with 80486[edit]

Instruction Opcode Meaning Notes
BSWAP r32 0F C8+r Byte Swap r = r<<24 | r<<8&0x00FF0000 | r>>8&0x0000FF00 | r>>24; Only defined for 32-bit registers. Usually used to change between little endian and big endian representations. When used with 16-bit registers produces various different results on 486,[13] 586, and Bochs/QEMU.[14]
CMPXCHG r/m8, r8 0F A6 /r[15] Compare and Exchange 0F A6/A7 encodings only available on 80486 stepping A.[16]

0F B0/B1 encodings available on 80486 stepping B and later x86 CPUs.

Instruction atomic only if used with LOCK prefix.

0F B0 /r[17]
CMPXCHG r/m, r16/32 0F A7 /r
0F B1 /r
INVD 0F 08 Invalidate Internal Caches Flush internal caches. Modified data present in the cache are not written back to memory, potentially causing data loss.
INVLPG m8 0F 01 /7 Invalidate TLB Entry Invalidate TLB Entry for page that contains data specified.
WBINVD 0F 09 Write Back and Invalidate Cache Writes back all modified cache lines in the processor's internal cache to main memory and invalidates the internal caches.
XADD r/m,r8 0F C0 /r eXchange and ADD Exchanges the first operand with the second operand, then loads the sum of the two values into the destination operand.

Instruction atomic only if used with LOCK prefix.

XADD r/m,r16/32 0F C1 /r

Added with Pentium[edit]

Instruction Opcode Meaning Notes
CPUID 0F A2 CPU IDentification Returns data regarding processor identification and features, and returns data to the EAX, EBX, ECX, and EDX registers. Instruction functions specified by the EAX register.[1] This was also added to later 80486 processors
CMPXCHG8B m64 0F C7 /1 CoMPare and eXCHanGe 8 bytes Compare EDX:EAX with m64. If equal, set ZF and load ECX:EBX into m64. Else, clear ZF and load m64 into EDX:EAX.

Instruction atomic only if used with LOCK prefix.

LOCK CMPXCHG8B with a register operand (which is an invalid encoding) can cause hangs on some Intel Pentium CPUs (Pentium F00F bug).

RDMSR 0F 32 ReaD from Model-specific register Load MSR specified by ECX into EDX:EAX
RDTSC 0F 31 ReaD Time Stamp Counter Returns the number of processor ticks since the processor being "ONLINE" (since the last power on of system)
WRMSR 0F 30 WRite to Model-Specific Register Write the value in EDX:EAX to MSR specified by ECX
RSM[18] 0F AA Resume from System Management Mode This was introduced by the i386SL and later and is also in the i486SL and later, as well as Cyrix 486SLC/e[19] and later. Resumes from System Management Mode (SMM)

Added with Pentium MMX[edit]

Instruction Opcode Meaning Notes
RDPMC 0F 33 Read the PMC [Performance Monitoring Counter] Specified in the ECX register into registers EDX:EAX

Also MMX registers and MMX support instructions were added. They are usable for both integer and floating point operations, see below.

Added with Pentium Pro[edit]

Instruction Opcode Meaning Notes
CMOVcc r16,r/m

CMOVcc r32,r/m

0F 4x /r Conditional move (CMOVA, CMOVAE, CMOVB, CMOVBE, CMOVC, CMOVE, CMOVG, CMOVGE, CMOVL, CMOVLE, CMOVNA, CMOVNAE, CMOVNB, CMOVNBE, CMOVNC, CMOVNE, CMOVNG, CMOVNGE, CMOVNL, CMOVNLE, CMOVNO, CMOVNP, CMOVNS, CMOVNZ, CMOVO, CMOVP, CMOVPE, CMOVPO, CMOVS, CMOVZ)
UD2 0F 0B Undefined Instruction Generates an invalid opcode exception. This instruction is provided for software testing to explicitly generate an invalid opcode. The opcode for this instruction is reserved for this purpose.
NOP r/m  0F 1F /0 Official long NOP Introduced in the Pentium Pro, but undocumented until 2006.[20]

The whole 0F 18..1F opcode range was NOP in Pentium Pro. However, except for 0F 1F /0, Intel does not guarantee that these opcodes will remain NOP in future processors, and have indeed assigned some of these opcodes to other instructions in at least some processors.[21]

Added with Pentium II[edit]

Instruction Opcode Meaning Notes
SYSENTER 0F 34 SYStem call ENTER Sometimes called the Fast System Call instruction, this instruction was intended to increase the performance of operating system calls.

On the Pentium Pro, the CPUID instruction reports these instructions as available. This is considered incorrect, as the instructions are not officially supported on the Pentium Pro. (Third party testing indicates that the instructions are present but too defective to be usable on the Pentium Pro.[22])

SYSEXIT 0F 35 SYStem call EXIT

Added in specific non-Intel processors[edit]

Added with AMD K6[edit]

These instructions were added with AMD-K6, and are present in all later AMD x86 CPUs. They were also made an integral part of x86-64, and are therefore supported in the 64-bit "Long Mode" operation mode of all 64-bit x86 processors, including processors from Intel and VIA.

Instruction Opcode Meaning Notes
SYSCALL 0F 05 Fast System Call functionally equivalent to SYSENTER
SYSRET 0F 07 Fast System Return functionally equivalent to SYSEXIT

AMD changed the CPUID detection bit for this feature from the K6-II on.

Added as instruction set extensions[edit]

SSE instructions (non-SIMD)[edit]

Added with SSE[edit]
Instruction Opcode Meaning Notes
PREFETCHT0 0F 18 /1 Prefetch Data from Address Prefetch into all cache levels
PREFETCHT1 0F 18 /2 Prefetch Data from Address Prefetch into all cache levels EXCEPT[23][24] L1
PREFETCHT2 0F 18 /3 Prefetch Data from Address Prefetch into all cache levels EXCEPT L1 and L2
PREFETCHNTA 0F 18 /0 Prefetch Data from Address Prefetch to non-temporal cache structure, minimizing cache pollution.
SFENCE 0F AE F8 Store Fence Processor hint to make sure all store operations that took place prior to the SFENCE call are globally visible
Added with SSE2[edit]
Instruction Opcode Meaning Notes
CLFLUSH m8 0F AE /7 Cache Line Flush Invalidates the cache line that contains the linear address specified with the source operand from all levels of the processor cache hierarchy
LFENCE 0F AE E8 Load Fence Serializes load operations.
MFENCE 0F AE F0 Memory Fence Performs a serializing operation on all load and store instructions that were issued prior the MFENCE instruction.
MOVNTI m32, r32 0F C3 /r Move Doubleword Non-Temporal Move doubleword from r32 to m32, minimizing pollution in the cache hierarchy.
PAUSE F3 90 Hint To Suspend Execution Provides a hint to the processor that the following code is a spin loop. Suspends execution of the thread for a number of cycles to free resources for the sibling SMT thread to proceed.
Added with SSE3[edit]
Instruction Opcode Meaning Notes
MONITOR EAX, ECX, EDX 0F 01 C8 Setup Monitor Address Sets up a linear address range to be monitored by hardware and activates the monitor.
MWAIT EAX, ECX 0F 01 C9 Monitor Wait Processor hint to stop instruction execution and enter an implementation-dependent optimized state until occurrence of a class of events.
Added with SSE4.2[edit]
Instruction Opcode Meaning Notes
CRC32 r32, r/m8 F2 0F 38 F0 /r Accumulate CRC32 Computes CRC value using the CRC-32C (Castagnoli) polynomial 0x11EDC6F41 (normal form 0x1EDC6F41). This is the polynomial used in iSCSI. In contrast to the more popular one used in Ethernet, its parity is even, and it can thus detect any error with an odd number of changed bits.
CRC32 r32, r/m8 F2 REX 0F 38 F0 /r
CRC32 r32, r/m16 F2 0F 38 F1 /r
CRC32 r32, r/m32 F2 0F 38 F1 /r
CRC32 r64, r/m8 F2 REX.W 0F 38 F0 /r
CRC32 r64, r/m64 F2 REX.W 0F 38 F1 /r
CRC32 r32, r/m8 F2 0F 38 F0 /r

Added with x86-64[edit]

Instruction Meaning Notes
CDQE Sign extend EAX into RAX
CQO Sign extend RAX into RDX:RAX
CMPSQ CoMPare String Quadword
CMPXCHG16B CoMPare and eXCHanGe 16 Bytes
IRETQ 64-bit Return from Interrupt
JRCXZ Jump if RCX is zero
LODSQ LoaD String Quadword
MOVSXD MOV with Sign Extend 32-bit to 64-bit
POPFQ POP RFLAGS Register
PUSHFQ PUSH RFLAGS Register
RDTSCP ReaD Time Stamp Counter and Processor ID
SCASQ SCAn String Quadword
STOSQ STOre String Quadword
SWAPGS Exchange GS base with KernelGSBase MSR

Bit manipulation extensions[edit]

Added with ABM[edit]

LZCNT, POPCNT (POPulation CouNT) – advanced bit manipulation

Added with BMI1[edit]

ANDN, BEXTR, BLSI, BLSMSK, BLSR, TZCNT

Added with BMI2[edit]

BZHI, MULX, PDEP, PEXT, RORX, SARX, SHRX, SHLX

Added with CLMUL instruction set[edit]

Instruction Opcode Description
PCLMULQDQ xmmreg,xmmrm,imm 66 0f 3a 44 /r ib Perform a carry-less multiplication of two 64-bit polynomials over the finite field GF(2k).
PCLMULLQLQDQ xmmreg,xmmrm 66 0f 3a 44 /r 00 Multiply the low halves of the two registers.
PCLMULHQLQDQ xmmreg,xmmrm 66 0f 3a 44 /r 01 Multiply the high half of the destination register by the low half of the source register.
PCLMULLQHQDQ xmmreg,xmmrm 66 0f 3a 44 /r 10 Multiply the low half of the destination register by the high half of the source register.
PCLMULHQHQDQ xmmreg,xmmrm 66 0f 3a 44 /r 11 Multiply the high halves of the two registers.

Added with Intel ADX[edit]

Instruction Description
ADCX Adds two unsigned integers plus carry, reading the carry from the carry flag and if necessary setting it there. Does not affect other flags than the carry.
ADOX Adds two unsigned integers plus carry, reading the carry from the overflow flag and if necessary setting it there. Does not affect other flags than the overflow.

Added with Intel TSX[edit]

Instruction Opcode Description
XBEGIN rel16/32 C7 F8 cw/cd Start transaction. If transaction fails, perform a branch to the given relative offset.
XEND 0F 01 D5 End transaction.
XABORT imm8 C6 F8 ib Abort transaction with 8-bit immediate as error code.
XACQUIRE F2 Instruction prefix to indicate start of hardware lock elision, used with memory atomic instructions only (for other instructions, the F2 prefix may have other meanings). When used with such instructions, may start a transaction instead of performing the memory atomic operation.
XRELEASE F3 Instruction prefix to indicate end of hardware lock elision, used with memory atomic/store instructions only (for other instructions, the F3 prefix may have other meanings). When used with such instructions during hardware lock elision, will end the associated transaction instead of performing the store/atomic.


Added with Intel CET[edit]

CET adds two distinct features to help protect against security exploits such as return-oriented programming: a shadow stack (CET_SS), and indirect branch tracking (CET_IBT).

Instruction Opcode Description Notes
INCSSPD r32 F3 0F AE /5 Increment shadow stack pointer Shadow stack (CET_SS).

When shadow stacks are enabled, return addresses are pushed on both the regular stack and the shadow stack when a function call is made. They are then both popped on return from the function call - if they do not match, then the stack is assumed to be corrupted, and a #CP exception is issued.

The shadow stack is additionally required to be stored in specially marked memory pages which cannot be modified by normal memory store instructions.

INCSSPQ r64 F3 REX.W 0F AE /5
RDSSPD r32 F3 0F 1E /1 Read shadow stack pointer into register (low 32 bits)
RDSSPQ r64 F3 REX.W 0F 1E /1 Read shadow stack pointer into register (full 64 bits)
SAVEPREVSSP F3 0F 01 EA Save previous shadow stack pointer
RSTORSSP m64 F3 0F 01 /5 Restore saved shadow stack pointer
WRSSD m32,r32 0F 38 F6 /r Write 4 bytes to shadow stack
WRSSQ m64,r64 REX.W 0F 38 F6 /r Write 8 bytes to shadow stack
WRUSSD m32,r32 66 0F 38 F5 /r Write 4 bytes to user shadow stack
WRUSSQ m64,r64 66 REX.W 0F 38 F5 /r Write 8 bytes to user shadow stack
SETSSBSY F3 0F 01 E8 Mark shadow stack busy
CLRSSBSY m64 F3 0F AE /6 Clear shadow stack busy flag
ENDBR32 F3 0F 1E FB Terminate indirect branch in 32-bit mode Indirect Branch Tracking (CBT_IBT).

When IBT is enabled, an indirect branch (jump, call, return) to any instruction that is not an ENDBR32/64 instruction will cause a #CP exception.

ENDBR64 F3 0F 1E FA Terminate indirect branch in 64-bit mode
(no mnemonic) 3E Prefix used with indirect CALL/JMP near instructions (opcodes FF /2 and FF /4) to indicate that the branch target is not required to start with an ENDBR32/64 instruction. Prefix only honored when NO_TRACK_EN flag is set.

This prefix has the same encoding as the DS: segment override prefix - as of April 2022, Intel documentation does not appear to specify whether this prefix also retains its old segment-override function when used as a no-track prefix, nor does it provide an official mnemonic for this prefix.[25][26] (GNU binutils use "notrack"[27])

x87 floating-point instructions[edit]

Original 8087 instructions[edit]

Instruction Meaning Notes
F2XM1 More precise than for x close to zero.

On 8087, only supported for .

On 80387 and later, supported for .

FABS Absolute value
FADD Add
FADDP Add and pop
FBLD Load BCD Undefined result for non-BCD input.
FBSTP Store BCD and pop
FCHS Change sign
FCLEX Clear exceptions
FCOM Compare
FCOMP Compare and pop
FCOMPP Compare and pop twice
FDECSTP Decrement floating point stack pointer
FDISI Disable interrupts 8087 only, otherwise FNOP
FDIV Divide Pentium FDIV bug
FDIVP Divide and pop
FDIVR Divide reversed
FDIVRP Divide reversed and pop
FENI Enable interrupts 8087 only, otherwise FNOP
FFREE Free register
FIADD Integer add
FICOM Integer compare
FICOMP Integer compare and pop
FIDIV Integer divide
FIDIVR Integer divide reversed
FILD Load integer
FIMUL Integer multiply
FINCSTP Increment floating point stack pointer
FINIT Initialize floating point processor
FIST Store integer
FISTP Store integer and pop
FISUB Integer subtract
FISUBR Integer subtract reversed
FLD Floating point load FLD m80 and FLD st(i) variants will, with an sNaN argument, cause an invalid-operation exception on AMD but not Intel FPUs.
FLD1 Load 1.0 onto stack
FLDCW Load control word
FLDENV Load environment state
FLDENVW Load environment state, 16-bit
FLDL2E Load log2(e) onto stack Using round-to-nearest rounding on 8087.

Performing rounding based on rounding control on 80387 and later.

FLDL2T Load log2(10) onto stack
FLDLG2 Load log10(2) onto stack
FLDLN2 Load ln(2) onto stack
FLDPI Load π onto stack
FLDZ Load 0.0 onto stack
FMUL Multiply
FMULP Multiply and pop
FNCLEX Clear exceptions, no wait
FNDISI Disable interrupts, no wait 8087 only, otherwise FNOP
FNENI Enable interrupts, no wait 8087 only, otherwise FNOP
FNINIT Initialize floating point processor, no wait
FNOP No operation
FNSAVE Save FPU state, no wait, 8-bit
FNSAVEW Save FPU state, no wait, 16-bit
FNSTCW Store control word, no wait
FNSTENV Store FPU environment, no wait
FNSTENVW Store FPU environment, no wait, 16-bit
FNSTSW Store status word, no wait
FPATAN Partial arctangent Computes , with adjustment for quadrant similar to C's atan2() function.

On 8087, only supported for . This restriction was removed on the 80387.

FPREM Partial remainder Computes remainder with same sign as dividend, which is not IEEE-compliant.

May compute a partial remainder, in which case it must be run again (signalled by C2 flag register).

FPTAN Partial tangent On 8087, only supported for

On 80387 and later, supported for

FRNDINT Round to integer
FRSTOR Restore saved state
FRSTORW Restore saved state Perhaps not actually available in 8087
FSAVE Save FPU state
FSAVEW Save FPU state, 16-bit
FSCALE Scale by factor of 2 On 8087, only supported for scale factors in range and produces undefined behavior if .

These restrictions were removed on the 80387.

FSQRT Square root
FST Floating point store
FSTCW Store control word
FSTENV Store FPU environment
FSTENVW Store FPU environment, 16-bit
FSTP Store and pop FSTP m80 and FSTP st(i) variants will, with an sNaN argument, cause an invalid-operation exception on AMD but not Intel FPUs.
FSTSW Store status word
FSUB Subtract
FSUBP Subtract and pop
FSUBR Reverse subtract
FSUBRP Reverse subtract and pop
FTST Test for zero
FWAIT Wait while FPU is executing
FXAM Examine condition flags
FXCH Exchange registers
FXTRACT Extract exponent and significand
FYL2X y · log2 x if y = logb 2, then the base-b logarithm is computed
FYL2XP1 y · log2 (x+1) More precise than log2 z if x is close to zero.

Only supported for

Added in specific processors[edit]

Added with 80287[edit]

Instruction Meaning Notes
FSETPM Set protected mode 80287 only, otherwise FNOP
FSTSW AX Store FPU Status word into CPU register

Added with 80387[edit]

Instruction Meaning Notes
FLDENVD Load environment state, 32-bit
FSAVED Save FPU state, 32-bit
FPREM1 Partial remainder Computes IEEE remainder
FRSTORD Restore saved state, 32-bit
FSIN Sine Compute and/or .

Due to argument reduction being done with only about 68 bits of precision, is not precisely 1.0, but instead given by

.[28][29] This argument reduction inaccuracy also affects the FPTAN instruction.

FCOS Cosine
FSINCOS Sine and cosine
FSTENVD Store FPU environment, 32-bit
FUCOM Unordered compare
FUCOMP Unordered compare and pop
FUCOMPP Unordered compare and pop twice

Added with Pentium Pro[edit]

  • FCMOV variants: FCMOVB, FCMOVBE, FCMOVE, FCMOVNB, FCMOVNBE, FCMOVNE, FCMOVNU, FCMOVU
  • FCOMI variants: FCOMI, FCOMIP, FUCOMI, FUCOMIP

Added with SSE[edit]

FXRSTOR, FXSAVE

These are also supported on later Pentium IIs which do not contain SSE support

Added with SSE3[edit]

FISTTP (x87 to integer conversion with truncation regardless of status word)

SIMD instructions[edit]

MMX instructions[edit]

MMX instructions operate on the mm registers, which are 64 bits wide. They are shared with the FPU registers.

Original MMX instructions[edit]

Added with Pentium MMX

Instruction Opcode Meaning Notes
EMMS 0F 77 Empty MMX Technology State Marks all x87 FPU registers for use by FPU
MOVD mm, r/m32 0F 6E /r Move doubleword
MOVD r/m32, mm 0F 7E /r Move doubleword
MOVQ mm/m64, mm 0F 7F /r Move quadword
MOVQ mm, mm/m64 0F 6F /r Move quadword
MOVQ mm, r/m64 REX.W + 0F 6E /r Move quadword
MOVQ r/m64, mm REX.W + 0F 7E /r Move quadword
PACKSSDW mm1, mm2/m64 0F 6B /r Pack doublewords to words (signed with saturation)
PACKSSWB mm1, mm2/m64 0F 63 /r Pack words to bytes (signed with saturation)
PACKUSWB mm, mm/m64 0F 67 /r Pack words to bytes (unsigned with saturation)
PADDB mm, mm/m64 0F FC /r Add packed byte integers
PADDW mm, mm/m64 0F FD /r Add packed word integers
PADDD mm, mm/m64 0F FE /r Add packed doubleword integers
PADDQ mm, mm/m64 0F D4 /r Add packed quadword integers
PADDSB mm, mm/m64 0F EC /r Add packed signed byte integers and saturate
PADDSW mm, mm/m64 0F ED /r Add packed signed word integers and saturate
PADDUSB mm, mm/m64 0F DC /r Add packed unsigned byte integers and saturate
PADDUSW mm, mm/m64 0F DD /r Add packed unsigned word integers and saturate
PAND mm, mm/m64 0F DB /r Bitwise AND
PANDN mm, mm/m64 0F DF /r Bitwise AND NOT
POR mm, mm/m64 0F EB /r Bitwise OR
PXOR mm, mm/m64 0F EF /r Bitwise XOR
PCMPEQB mm, mm/m64 0F 74 /r Compare packed bytes for equality
PCMPEQW mm, mm/m64 0F 75 /r Compare packed words for equality
PCMPEQD mm, mm/m64 0F 76 /r Compare packed doublewords for equality
PCMPGTB mm, mm/m64 0F 64 /r Compare packed signed byte integers for greater than
PCMPGTW mm, mm/m64 0F 65 /r Compare packed signed word integers for greater than
PCMPGTD mm, mm/m64 0F 66 /r Compare packed signed doubleword integers for greater than
PMADDWD mm, mm/m64 0F F5 /r Multiply packed words, add adjacent doubleword results
PMULHW mm, mm/m64 0F E5 /r Multiply packed signed word integers, store high 16 bits of results
PMULLW mm, mm/m64 0F D5 /r Multiply packed signed word integers, store low 16 bits of results
PSLLW mm1, imm8 0F 71 /6 ib Shift left words, shift in zeros
PSLLW mm, mm/m64 0F F1 /r Shift left words, shift in zeros
PSLLD mm, imm8 0F 72 /6 ib Shift left doublewords, shift in zeros
PSLLD mm, mm/m64 0F F2 /r Shift left doublewords, shift in zeros
PSLLQ mm, imm8 0F 73 /6 ib Shift left quadword, shift in zeros
PSLLQ mm, mm/m64 0F F3 /r Shift left quadword, shift in zeros
PSRAD mm, imm8 0F 72 /4 ib Shift right doublewords, shift in sign bits
PSRAD mm, mm/m64 0F E2 /r Shift right doublewords, shift in sign bits
PSRAW mm, imm8 0F 71 /4 ib Shift right words, shift in sign bits
PSRAW mm, mm/m64 0F E1 /r Shift right words, shift in sign bits
PSRLW mm, imm8 0F 71 /2 ib Shift right words, shift in zeros
PSRLW mm, mm/m64 0F D1 /r Shift right words, shift in zeros
PSRLD mm, imm8 0F 72 /2 ib Shift right doublewords, shift in zeros
PSRLD mm, mm/m64 0F D2 /r Shift right doublewords, shift in zeros
PSRLQ mm, imm8 0F 73 /2 ib Shift right quadword, shift in zeros
PSRLQ mm, mm/m64 0F D3 /r Shift right quadword, shift in zeros
PSUBB mm, mm/m64 0F F8 /r Subtract packed byte integers
PSUBW mm, mm/m64 0F F9 /r Subtract packed word integers
PSUBD mm, mm/m64 0F FA /r Subtract packed doubleword integers
PSUBSB mm, mm/m64 0F E8 /r Subtract signed packed bytes with saturation
PSUBSW mm, mm/m64 0F E9 /r Subtract signed packed words with saturation
PSUBUSB mm, mm/m64 0F D8 /r Subtract unsigned packed bytes with saturation
PSUBUSW mm, mm/m64 0F D9 /r Subtract unsigned packed words with saturation
PUNPCKHBW mm, mm/m64 0F 68 /r Unpack and interleave high-order bytes
PUNPCKHWD mm, mm/m64 0F 69 /r Unpack and interleave high-order words
PUNPCKHDQ mm, mm/m64 0F 6A /r Unpack and interleave high-order doublewords
PUNPCKLBW mm, mm/m32 0F 60 /r Unpack and interleave low-order bytes
PUNPCKLWD mm, mm/m32 0F 61 /r Unpack and interleave low-order words
PUNPCKLDQ mm, mm/m32 0F 62 /r Unpack and interleave low-order doublewords

MMX instructions added in specific processors[edit]

MMX instructions added with MMX+ and SSE[edit]

The following MMX instruction were added with SSE. They are also available on the Athlon under the name MMX+.

Instruction Opcode Meaning
MASKMOVQ mm1, mm2 0F F7 /r Masked Move of Quadword
MOVNTQ m64, mm 0F E7 /r Move Quadword Using Non-Temporal Hint
PSHUFW mm1, mm2/m64, imm8 0F 70 /r ib Shuffle Packed Words
PINSRW mm, r32/m16, imm8 0F C4 /r Insert Word
PEXTRW reg, mm, imm8 0F C5 /r Extract Word
PMOVMSKB reg, mm 0F D7 /r Move Byte Mask
PMINUB mm1, mm2/m64 0F DA /r Minimum of Packed Unsigned Byte Integers
PMAXUB mm1, mm2/m64 0F DE /r Maximum of Packed Unsigned Byte Integers
PAVGB mm1, mm2/m64 0F E0 /r Average Packed Integers
PAVGW mm1, mm2/m64 0F E3 /r Average Packed Integers
PMULHUW mm1, mm2/m64 0F E4 /r Multiply Packed Unsigned Integers and Store High Result
PMINSW mm1, mm2/m64 0F EA /r Minimum of Packed Signed Word Integers
PMAXSW mm1, mm2/m64 0F EE /r Maximum of Packed Signed Word Integers
PSADBW mm1, mm2/m64 0F F6 /r Compute Sum of Absolute Differences
MMX instructions added with SSE2[edit]

The following MMX instructions were added with SSE2:

Instruction Opcode Meaning
PSUBQ mm1, mm2/m64 0F FB /r Subtract quadword integer
PMULUDQ mm1, mm2/m64 0F F4 /r Multiply unsigned doubleword integer
MMX instructions added with SSSE3[edit]
Instruction Opcode Meaning
PSIGNB mm1, mm2/m64 0F 38 08 /r Negate/zero/preserve packed byte integers depending on corresponding sign
PSIGNW mm1, mm2/m64 0F 38 09 /r Negate/zero/preserve packed word integers depending on corresponding sign
PSIGND mm1, mm2/m64 0F 38 0A /r Negate/zero/preserve packed doubleword integers depending on corresponding sign
PSHUFB mm1, mm2/m64 0F 38 00 /r Shuffle bytes
PMULHRSW mm1, mm2/m64 0F 38 0B /r Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits
PMADDUBSW mm1, mm2/m64 0F 38 04 /r Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words
PHSUBW mm1, mm2/m64 0F 38 05 /r Subtract and pack 16-bit signed integers horizontally
PHSUBSW mm1, mm2/m64 0F 38 07 /r Subtract and pack 16-bit signed integer horizontally with saturation
PHSUBD mm1, mm2/m64 0F 38 06 /r Subtract and pack 32-bit signed integers horizontally
PHADDSW mm1, mm2/m64 0F 38 03 /r Add and pack 16-bit signed integers horizontally, pack saturated integers to mm1.
PHADDW mm1, mm2/m64 0F 38 01 /r Add and pack 16-bit integers horizontally
PHADDD mm1, mm2/m64 0F 38 02 /r Add and pack 32-bit integers horizontally
PALIGNR mm1, mm2/m64, imm8 0F 3A 0F /r ib Concatenate destination and source operands, extract byte-aligned result shifted to the right
PABSB mm1, mm2/m64 0F 38 1C /r Compute the absolute value of bytes and store unsigned result
PABSW mm1, mm2/m64 0F 38 1D /r Compute the absolute value of 16-bit integers and store unsigned result
PABSD mm1, mm2/m64 0F 38 1E /r Compute the absolute value of 32-bit integers and store unsigned result

SSE instructions[edit]

Added with Pentium III

SSE instructions operate on xmm registers, which are 128 bit wide.

SSE consists of the following SSE SIMD floating-point instructions:

Instruction Opcode Meaning
ANDPS* xmm1, xmm2/m128 0F 54 /r Bitwise Logical AND of Packed Single-Precision Floating-Point Values
ANDNPS* xmm1, xmm2/m128 0F 55 /r Bitwise Logical AND NOT of Packed Single-Precision Floating-Point Values
ORPS* xmm1, xmm2/m128 0F 56 /r Bitwise Logical OR of Single-Precision Floating-Point Values
XORPS* xmm1, xmm2/m128 0F 57 /r Bitwise Logical XOR for Single-Precision Floating-Point Values
MOVUPS xmm1, xmm2/m128 0F 10 /r Move Unaligned Packed Single-Precision Floating-Point Values
MOVSS xmm1, xmm2/m32 F3 0F 10 /r Move Scalar Single-Precision Floating-Point Values
MOVUPS xmm2/m128, xmm1 0F 11 /r Move Unaligned Packed Single-Precision Floating-Point Values
MOVSS xmm2/m32, xmm1 F3 0F 11 /r Move Scalar Single-Precision Floating-Point Values
MOVLPS xmm, m64 0F 12 /r Move Low Packed Single-Precision Floating-Point Values
MOVHLPS xmm1, xmm2 0F 12 /r Move Packed Single-Precision Floating-Point Values High to Low
MOVLPS m64, xmm 0F 13 /r Move Low Packed Single-Precision Floating-Point Values
UNPCKLPS xmm1, xmm2/m128 0F 14 /r Unpack and Interleave Low Packed Single-Precision Floating-Point Values
UNPCKHPS xmm1, xmm2/m128 0F 15 /r Unpack and Interleave High Packed Single-Precision Floating-Point Values
MOVHPS xmm, m64 0F 16 /r Move High Packed Single-Precision Floating-Point Values
MOVLHPS xmm1, xmm2 0F 16 /r Move Packed Single-Precision Floating-Point Values Low to High
MOVHPS m64, xmm 0F 17 /r Move High Packed Single-Precision Floating-Point Values
MOVAPS xmm1, xmm2/m128 0F 28 /r Move Aligned Packed Single-Precision Floating-Point Values
MOVAPS xmm2/m128, xmm1 0F 29 /r Move Aligned Packed Single-Precision Floating-Point Values
MOVNTPS m128, xmm1 0F 2B /r Move Aligned Four Packed Single-FP Non Temporal
MOVMSKPS reg, xmm 0F 50 /r Extract Packed Single-Precision Floating-Point 4-bit Sign Mask. The upper bits of the register are filled with zeros.
CVTPI2PS xmm, mm/m64 0F 2A /r Convert Packed Dword Integers to Packed Single-Precision FP Values
CVTSI2SS xmm, r/m32 F3 0F 2A /r Convert Dword Integer to Scalar Single-Precision FP Value
CVTSI2SS xmm, r/m64 F3 REX.W 0F 2A /r Convert Qword Integer to Scalar Single-Precision FP Value
MOVNTPS m128, xmm 0F 2B /r Store Packed Single-Precision Floating-Point Values Using Non-Temporal Hint
CVTTPS2PI mm, xmm/m64 0F 2C /r Convert with Truncation Packed Single-Precision FP Values to Packed Dword Integers
CVTTSS2SI r32, xmm/m32 F3 0F 2C /r Convert with Truncation Scalar Single-Precision FP Value to Dword Integer
CVTTSS2SI r64, xmm1/m32 F3 REX.W 0F 2C /r Convert with Truncation Scalar Single-Precision FP Value to Qword Integer
CVTPS2PI mm, xmm/m64 0F 2D /r Convert Packed Single-Precision FP Values to Packed Dword Integers
CVTSS2SI r32, xmm/m32 F3 0F 2D /r Convert Scalar Single-Precision FP Value to Dword Integer
CVTSS2SI r64, xmm1/m32 F3 REX.W 0F 2D /r Convert Scalar Single-Precision FP Value to Qword Integer
UCOMISS xmm1, xmm2/m32 0F 2E /r Unordered Compare Scalar Single-Precision Floating-Point Values and Set EFLAGS
COMISS xmm1, xmm2/m32 0F 2F /r Compare Scalar Ordered Single-Precision Floating-Point Values and Set EFLAGS
SQRTPS xmm1, xmm2/m128 0F 51 /r Compute Square Roots of Packed Single-Precision Floating-Point Values
SQRTSS xmm1, xmm2/m32 F3 0F 51 /r Compute Square Root of Scalar Single-Precision Floating-Point Value
RSQRTPS xmm1, xmm2/m128 0F 52 /r Compute Reciprocal of Square Root of Packed Single-Precision Floating-Point Value
RSQRTSS xmm1, xmm2/m32 F3 0F 52 /r Compute Reciprocal of Square Root of Scalar Single-Precision Floating-Point Value
RCPPS xmm1, xmm2/m128 0F 53 /r Compute Reciprocal of Packed Single-Precision Floating-Point Values
RCPSS xmm1, xmm2/m32 F3 0F 53 /r Compute Reciprocal of Scalar Single-Precision Floating-Point Values
ADDPS xmm1, xmm2/m128 0F 58 /r Add Packed Single-Precision Floating-Point Values
ADDSS xmm1, xmm2/m32 F3 0F 58 /r Add Scalar Single-Precision Floating-Point Values
MULPS xmm1, xmm2/m128 0F 59 /r Multiply Packed Single-Precision Floating-Point Values
MULSS xmm1, xmm2/m32 F3 0F 59 /r Multiply Scalar Single-Precision Floating-Point Values
SUBPS xmm1, xmm2/m128 0F 5C /r Subtract Packed Single-Precision Floating-Point Values
SUBSS xmm1, xmm2/m32 F3 0F 5C /r Subtract Scalar Single-Precision Floating-Point Values
MINPS xmm1, xmm2/m128 0F 5D /r Return Minimum Packed Single-Precision Floating-Point Values
MINSS xmm1, xmm2/m32 F3 0F 5D /r Return Minimum Scalar Single-Precision Floating-Point Values
DIVPS xmm1, xmm2/m128 0F 5E /r Divide Packed Single-Precision Floating-Point Values
DIVSS xmm1, xmm2/m32 F3 0F 5E /r Divide Scalar Single-Precision Floating-Point Values
MAXPS xmm1, xmm2/m128 0F 5F /r Return Maximum Packed Single-Precision Floating-Point Values
MAXSS xmm1, xmm2/m32 F3 0F 5F /r Return Maximum Scalar Single-Precision Floating-Point Values
LDMXCSR m32 0F AE /2 Load MXCSR Register State
STMXCSR m32 0F AE /3 Store MXCSR Register State
CMPPS xmm1, xmm2/m128, imm8 0F C2 /r ib Compare Packed Single-Precision Floating-Point Values
CMPSS xmm1, xmm2/m32, imm8 F3 0F C2 /r ib Compare Scalar Single-Precision Floating-Point Values
SHUFPS xmm1, xmm2/m128, imm8 0F C6 /r ib Shuffle Packed Single-Precision Floating-Point Values
  • The floating point single bitwise operations ANDPS, ANDNPS, ORPS and XORPS produce the same result as the SSE2 integer (PAND, PANDN, POR, PXOR) and double ones (ANDPD, ANDNPD, ORPD, XORPD), but can introduce extra latency for domain changes when applied values of the wrong type.[30]

SSE2 instructions[edit]

Added with Pentium 4

SSE2 SIMD floating-point instructions[edit]

SSE2 data movement instructions[edit]
Instruction Opcode Meaning
MOVAPD xmm1, xmm2/m128 66 0F 28 /r Move Aligned Packed Double-Precision Floating-Point Values
MOVAPD xmm2/m128, xmm1 66 0F 29 /r Move Aligned Packed Double-Precision Floating-Point Values
MOVNTPD m128, xmm1 66 0F 2B /r Store Packed Double-Precision Floating-Point Values Using Non-Temporal Hint
MOVHPD xmm1, m64 66 0F 16 /r Move High Packed Double-Precision Floating-Point Value
MOVHPD m64, xmm1 66 0F 17 /r Move High Packed Double-Precision Floating-Point Value
MOVLPD xmm1, m64 66 0F 12 /r Move Low Packed Double-Precision Floating-Point Value
MOVLPD m64, xmm1 66 0F 13/r Move Low Packed Double-Precision Floating-Point Value
MOVUPD xmm1, xmm2/m128 66 0F 10 /r Move Unaligned Packed Double-Precision Floating-Point Values
MOVUPD xmm2/m128, xmm1 66 0F 11 /r Move Unaligned Packed Double-Precision Floating-Point Values
MOVMSKPD reg, xmm 66 0F 50 /r Extract Packed Double-Precision Floating-Point Sign Mask
MOVSD* xmm1, xmm2/m64 F2 0F 10 /r Move or Merge Scalar Double-Precision Floating-Point Value
MOVSD xmm1/m64, xmm2 F2 0F 11 /r Move or Merge Scalar Double-Precision Floating-Point Value
SSE2 packed arithmetic instructions[edit]
Instruction Opcode Meaning
ADDPD xmm1, xmm2/m128 66 0F 58 /r Add Packed Double-Precision Floating-Point Values
ADDSD xmm1, xmm2/m64 F2 0F 58 /r Add Low Double-Precision Floating-Point Value
DIVPD xmm1, xmm2/m128 66 0F 5E /r Divide Packed Double-Precision Floating-Point Values
DIVSD xmm1, xmm2/m64 F2 0F 5E /r Divide Scalar Double-Precision Floating-Point Value
MAXPD xmm1, xmm2/m128 66 0F 5F /r Maximum of Packed Double-Precision Floating-Point Values
MAXSD xmm1, xmm2/m64 F2 0F 5F /r Return Maximum Scalar Double-Precision Floating-Point Value
MINPD xmm1, xmm2/m128 66 0F 5D /r Minimum of Packed Double-Precision Floating-Point Values
MINSD xmm1, xmm2/m64 F2 0F 5D /r Return Minimum Scalar Double-Precision Floating-Point Value
MULPD xmm1, xmm2/m128 66 0F 59 /r Multiply Packed Double-Precision Floating-Point Values
MULSD xmm1,xmm2/m64 F2 0F 59 /r Multiply Scalar Double-Precision Floating-Point Value
SQRTPD xmm1, xmm2/m128 66 0F 51 /r Square Root of Double-Precision Floating-Point Values
SQRTSD xmm1,xmm2/m64 F2 0F 51/r Compute Square Root of Scalar Double-Precision Floating-Point Value
SUBPD xmm1, xmm2/m128 66 0F 5C /r Subtract Packed Double-Precision Floating-Point Values
SUBSD xmm1, xmm2/m64 F2 0F 5C /r Subtract Scalar Double-Precision Floating-Point Value
SSE2 logical instructions[edit]
Instruction Opcode Meaning
ANDPD xmm1, xmm2/m128 66 0F 54 /r Bitwise Logical AND of Packed Double Precision Floating-Point Values
ANDNPD xmm1, xmm2/m128 66 0F 55 /r Bitwise Logical AND NOT of Packed Double Precision Floating-Point Values
ORPD xmm1, xmm2/m128 66 0F 56/r Bitwise Logical OR of Packed Double Precision Floating-Point Values
XORPD xmm1, xmm2/m128 66 0F 57/r Bitwise Logical XOR of Packed Double Precision Floating-Point Values
SSE2 compare instructions[edit]
Instruction Opcode Meaning
CMPPD xmm1, xmm2/m128, imm8 66 0F C2 /r ib Compare Packed Double-Precision Floating-Point Values
CMPSD* xmm1, xmm2/m64, imm8 F2 0F C2 /r ib Compare Low Double-Precision Floating-Point Values
COMISD xmm1, xmm2/m64 66 0F 2F /r Compare Scalar Ordered Double-Precision Floating-Point Values and Set EFLAGS
UCOMISD xmm1, xmm2/m64 66 0F 2E /r Unordered Compare Scalar Double-Precision Floating-Point Values and Set EFLAGS
SSE2 shuffle and unpack instructions[edit]
Instruction Opcode Meaning
SHUFPD xmm1, xmm2/m128, imm8 66 0F C6 /r ib Packed Interleave Shuffle of Pairs of Double-Precision Floating-Point Values
UNPCKHPD xmm1, xmm2/m128 66 0F 15 /r Unpack and Interleave High Packed Double-Precision Floating-Point Values
UNPCKLPD xmm1, xmm2/m128 66 0F 14 /r Unpack and Interleave Low Packed Double-Precision Floating-Point Values
SSE2 conversion instructions[edit]
Instruction Opcode Meaning
CVTDQ2PD xmm1, xmm2/m64 F3 0F E6 /r Convert Packed Doubleword Integers to Packed Double-Precision Floating-Point Values
CVTDQ2PS xmm1, xmm2/m128 0F 5B /r Convert Packed Doubleword Integers to Packed Single-Precision Floating-Point Values
CVTPD2DQ xmm1, xmm2/m128 F2 0F E6 /r Convert Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
CVTPD2PI mm, xmm/m128 66 0F 2D /r Convert Packed Double-Precision FP Values to Packed Dword Integers
CVTPD2PS xmm1, xmm2/m128 66 0F 5A /r Convert Packed Double-Precision Floating-Point Values to Packed Single-Precision Floating-Point Values
CVTPI2PD xmm, mm/m64 66 0F 2A /r Convert Packed Dword Integers to Packed Double-Precision FP Values
CVTPS2DQ xmm1, xmm2/m128 66 0F 5B /r Convert Packed Single-Precision Floating-Point Values to Packed Signed Doubleword Integer Values
CVTPS2PD xmm1, xmm2/m64 0F 5A /r Convert Packed Single-Precision Floating-Point Values to Packed Double-Precision Floating-Point Values
CVTSD2SI r32, xmm1/m64 F2 0F 2D /r Convert Scalar Double-Precision Floating-Point Value to Doubleword Integer
CVTSD2SI r64, xmm1/m64 F2 REX.W 0F 2D /r Convert Scalar Double-Precision Floating-Point Value to Quadword Integer With Sign Extension
CVTSD2SS xmm1, xmm2/m64 F2 0F 5A /r Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
CVTSI2SD xmm1, r32/m32 F2 0F 2A /r Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
CVTSI2SD xmm1, r/m64 F2 REX.W 0F 2A /r Convert Quadword Integer to Scalar Double-Precision Floating-Point value
CVTSS2SD xmm1, xmm2/m32 F3 0F 5A /r Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
CVTTPD2DQ xmm1, xmm2/m128 66 0F E6 /r Convert with Truncation Packed Double-Precision Floating-Point Values to Packed Doubleword Integers
CVTTPD2PI mm, xmm/m128 66 0F 2C /r Convert with Truncation Packed Double-Precision FP Values to Packed Dword Integers
CVTTPS2DQ xmm1, xmm2/m128 F3 0F 5B /r Convert with Truncation Packed Single-Precision Floating-Point Values to Packed Signed Doubleword Integer Values
CVTTSD2SI r32, xmm1/m64 F2 0F 2C /r Convert with Truncation Scalar Double-Precision Floating-Point Value to Signed Dword Integer
CVTTSD2SI r64, xmm1/m64 F2 REX.W 0F 2C /r Convert with Truncation Scalar Double-Precision Floating-Point Value To Signed Qword Integer

SSE2 SIMD integer instructions[edit]

SSE2 MMX-like instructions extended to SSE registers[edit]

SSE2 allows execution of MMX instructions on SSE registers, processing twice the amount of data at once.

Instruction Opcode Meaning
MOVD xmm, r/m32 66 0F 6E /r Move doubleword
MOVD r/m32, xmm 66 0F 7E /r Move doubleword
MOVQ xmm1, xmm2/m64 F3 0F 7E /r Move quadword
MOVQ xmm2/m64, xmm1 66 0F D6 /r Move quadword
MOVQ r/m64, xmm 66 REX.W 0F 7E /r Move quadword
MOVQ xmm, r/m64 66 REX.W 0F 6E /r Move quadword
PMOVMSKB reg, xmm 66 0F D7 /r Move a byte mask, zeroing the upper bits of the register
PEXTRW reg, xmm, imm8 66 0F C5 /r ib Extract specified word and move it to reg, setting bits 15-0 and zeroing the rest
PINSRW xmm, r32/m16, imm8 66 0F C4 /r ib Move low word at the specified word position
PACKSSDW xmm1, xmm2/m128 66 0F 6B /r Converts 4 packed signed doubleword integers into 8 packed signed word integers with saturation
PACKSSWB xmm1, xmm2/m128 66 0F 63 /r Converts 8 packed signed word integers into 16 packed signed byte integers with saturation
PACKUSWB xmm1, xmm2/m128 66 0F 67 /r Converts 8 signed word integers into 16 unsigned byte integers with saturation
PADDB xmm1, xmm2/m128 66 0F FC /r Add packed byte integers
PADDW xmm1, xmm2/m128 66 0F FD /r Add packed word integers
PADDD xmm1, xmm2/m128 66 0F FE /r Add packed doubleword integers
PADDQ xmm1, xmm2/m128 66 0F D4 /r Add packed quadword integers.
PADDSB xmm1, xmm2/m128 66 0F EC /r Add packed signed byte integers with saturation
PADDSW xmm1, xmm2/m128 66 0F ED /r Add packed signed word integers with saturation
PADDUSB xmm1, xmm2/m128 66 0F DC /r Add packed unsigned byte integers with saturation
PADDUSW xmm1, xmm2/m128 66 0F DD /r Add packed unsigned word integers with saturation
PAND xmm1, xmm2/m128 66 0F DB /r Bitwise AND
PANDN xmm1, xmm2/m128 66 0F DF /r Bitwise AND NOT
POR xmm1, xmm2/m128 66 0F EB /r Bitwise OR
PXOR xmm1, xmm2/m128 66 0F EF /r Bitwise XOR
PCMPEQB xmm1, xmm2/m128 66 0F 74 /r Compare packed bytes for equality.
PCMPEQW xmm1, xmm2/m128 66 0F 75 /r Compare packed words for equality.
PCMPEQD xmm1, xmm2/m128 66 0F 76 /r Compare packed doublewords for equality.
PCMPGTB xmm1, xmm2/m128 66 0F 64 /r Compare packed signed byte integers for greater than
PCMPGTW xmm1, xmm2/m128 66 0F 65 /r Compare packed signed word integers for greater than
PCMPGTD xmm1, xmm2/m128 66 0F 66 /r Compare packed signed doubleword integers for greater than
PMULLW xmm1, xmm2/m128 66 0F D5 /r Multiply packed signed word integers with saturation
PMULHW xmm1, xmm2/m128 66 0F E5 /r Multiply the packed signed word integers, store the high 16 bits of the results
PMULHUW xmm1, xmm2/m128 66 0F E4 /r Multiply packed unsigned word integers, store the high 16 bits of the results
PMULUDQ xmm1, xmm2/m128 66 0F F4 /r Multiply packed unsigned doubleword integers
PSLLW xmm1, xmm2/m128 66 0F F1 /r Shift words left while shifting in 0s
PSLLW xmm1, imm8 66 0F 71 /6 ib Shift words left while shifting in 0s
PSLLD xmm1, xmm2/m128 66 0F F2 /r Shift doublewords left while shifting in 0s
PSLLD xmm1, imm8 66 0F 72 /6 ib Shift doublewords left while shifting in 0s
PSLLQ xmm1, xmm2/m128 66 0F F3 /r Shift quadwords left while shifting in 0s
PSLLQ xmm1, imm8 66 0F 73 /6 ib Shift quadwords left while shifting in 0s
PSRAD xmm1, xmm2/m128 66 0F E2 /r Shift doubleword right while shifting in sign bits
PSRAD xmm1, imm8 66 0F 72 /4 ib Shift doublewords right while shifting in sign bits
PSRAW xmm1, xmm2/m128 66 0F E1 /r Shift words right while shifting in sign bits
PSRAW xmm1, imm8 66 0F 71 /4 ib Shift words right while shifting in sign bits
PSRLW xmm1, xmm2/m128 66 0F D1 /r Shift words right while shifting in 0s
PSRLW xmm1, imm8 66 0F 71 /2 ib Shift words right while shifting in 0s
PSRLD xmm1, xmm2/m128 66 0F D2 /r Shift doublewords right while shifting in 0s
PSRLD xmm1, imm8 66 0F 72 /2 ib Shift doublewords right while shifting in 0s
PSRLQ xmm1, xmm2/m128 66 0F D3 /r Shift quadwords right while shifting in 0s
PSRLQ xmm1, imm8 66 0F 73 /2 ib Shift quadwords right while shifting in 0s
PSUBB xmm1, xmm2/m128 66 0F F8 /r Subtract packed byte integers
PSUBW xmm1, xmm2/m128 66 0F F9 /r Subtract packed word integers
PSUBD xmm1, xmm2/m128 66 0F FA /r Subtract packed doubleword integers
PSUBQ xmm1, xmm2/m128 66 0F FB /r Subtract packed quadword integers.
PSUBSB xmm1, xmm2/m128 66 0F E8 /r Subtract packed signed byte integers with saturation
PSUBSW xmm1, xmm2/m128 66 0F E9 /r Subtract packed signed word integers with saturation
PMADDWD xmm1, xmm2/m128 66 0F F5 /r Multiply the packed word integers, add adjacent doubleword results
PSUBUSB xmm1, xmm2/m128 66 0F D8 /r Subtract packed unsigned byte integers with saturation
PSUBUSW xmm1, xmm2/m128 66 0F D9 /r Subtract packed unsigned word integers with saturation
PUNPCKHBW xmm1, xmm2/m128 66 0F 68 /r Unpack and interleave high-order bytes
PUNPCKHWD xmm1, xmm2/m128 66 0F 69 /r Unpack and interleave high-order words
PUNPCKHDQ xmm1, xmm2/m128 66 0F 6A /r Unpack and interleave high-order doublewords
PUNPCKLBW xmm1, xmm2/m128 66 0F 60 /r Interleave low-order bytes
PUNPCKLWD xmm1, xmm2/m128 66 0F 61 /r Interleave low-order words
PUNPCKLDQ xmm1, xmm2/m128 66 0F 62 /r Interleave low-order doublewords
PAVGB xmm1, xmm2/m128 66 0F E0, /r Average packed unsigned byte integers with rounding
PAVGW xmm1, xmm2/m128 66 0F E3 /r Average packed unsigned word integers with rounding
PMINUB xmm1, xmm2/m128 66 0F DA /r Compare packed unsigned byte integers and store packed minimum values
PMINSW xmm1, xmm2/m128 66 0F EA /r Compare packed signed word integers and store packed minimum values
PMAXSW xmm1, xmm2/m128 66 0F EE /r Compare packed signed word integers and store maximum packed values
PMAXUB xmm1, xmm2/m128 66 0F DE /r Compare packed unsigned byte integers and store packed maximum values
PSADBW xmm1, xmm2/m128 66 0F F6 /r Computes the absolute differences of the packed unsigned byte integers; the 8 low differences and 8 high differences are then summed separately to produce two unsigned word integer results
SSE2 integer instructions for SSE registers only[edit]

The following instructions can be used only on SSE registers, since by their nature they do not work on MMX registers

Instruction Opcode Meaning
MASKMOVDQU xmm1, xmm2 66 0F F7 /r Non-Temporal Store of Selected Bytes from an XMM Register into Memory
MOVDQ2Q mm, xmm F2 0F D6 /r Move low quadword from XMM to MMX register.
MOVDQA xmm1, xmm2/m128 66 0F 6F /r Move aligned double quadword
MOVDQA xmm2/m128, xmm1 66 0F 7F /r Move aligned double quadword
MOVDQU xmm1, xmm2/m128 F3 0F 6F /r Move unaligned double quadword
MOVDQU xmm2/m128, xmm1 F3 0F 7F /r Move unaligned double quadword
MOVQ2DQ xmm, mm F3 0F D6 /r Move quadword from MMX register to low quadword of XMM register
MOVNTDQ m128, xmm1 66 0F E7 /r Store Packed Integers Using Non-Temporal Hint
PSHUFHW xmm1, xmm2/m128, imm8 F3 0F 70 /r ib Shuffle packed high words.
PSHUFLW xmm1, xmm2/m128, imm8 F2 0F 70 /r ib Shuffle packed low words.
PSHUFD xmm1, xmm2/m128, imm8 66 0F 70 /r ib Shuffle packed doublewords.
PSLLDQ xmm1, imm8 66 0F 73 /7 ib Packed shift left logical double quadwords.
PSRLDQ xmm1, imm8 66 0F 73 /3 ib Packed shift right logical double quadwords.
PUNPCKHQDQ xmm1, xmm2/m128 66 0F 6D /r Unpack and interleave high-order quadwords,
PUNPCKLQDQ xmm1, xmm2/m128 66 0F 6C /r Interleave low quadwords,

SSE3 instructions[edit]

Added with Pentium 4 supporting SSE3

SSE3 SIMD floating-point instructions[edit]

Instruction Opcode Meaning Notes
ADDSUBPS xmm1, xmm2/m128 F2 0F D0 /r Add/subtract single-precision floating-point values for Complex Arithmetic
ADDSUBPD xmm1, xmm2/m128 66 0F D0 /r Add/subtract double-precision floating-point values
MOVDDUP xmm1, xmm2/m64 F2 0F 12 /r Move double-precision floating-point value and duplicate
MOVSLDUP xmm1, xmm2/m128 F3 0F 12 /r Move and duplicate even index single-precision floating-point values
MOVSHDUP xmm1, xmm2/m128 F3 0F 16 /r Move and duplicate odd index single-precision floating-point values
HADDPS xmm1, xmm2/m128 F2 0F 7C /r Horizontal add packed single-precision floating-point values for Graphics
HADDPD xmm1, xmm2/m128 66 0F 7C /r Horizontal add packed double-precision floating-point values
HSUBPS xmm1, xmm2/m128 F2 0F 7D /r Horizontal subtract packed single-precision floating-point values
HSUBPD xmm1, xmm2/m128 66 0F 7D /r Horizontal subtract packed double-precision floating-point values

SSE3 SIMD integer instructions[edit]

Instruction Opcode Meaning Notes
LDDQU xmm1, mem F2 0F F0 /r Load unaligned data and return double quadword Instructionally equivalent to MOVDQU. For video encoding

SSSE3 instructions[edit]

Added with Xeon 5100 series and initial Core 2

The following MMX-like instructions extended to SSE registers were added with SSSE3

Instruction Opcode Meaning
PSIGNB xmm1, xmm2/m128 66 0F 38 08 /r Negate/zero/preserve packed byte integers depending on corresponding sign
PSIGNW xmm1, xmm2/m128 66 0F 38 09 /r Negate/zero/preserve packed word integers depending on corresponding sign
PSIGND xmm1, xmm2/m128 66 0F 38 0A /r Negate/zero/preserve packed doubleword integers depending on corresponding
PSHUFB xmm1, xmm2/m128 66 0F 38 00 /r Shuffle bytes
PMULHRSW xmm1, xmm2/m128 66 0F 38 0B /r Multiply 16-bit signed words, scale and round signed doublewords, pack high 16 bits
PMADDUBSW xmm1, xmm2/m128 66 0F 38 04 /r Multiply signed and unsigned bytes, add horizontal pair of signed words, pack saturated signed-words
PHSUBW xmm1, xmm2/m128 66 0F 38 05 /r Subtract and pack 16-bit signed integers horizontally
PHSUBSW xmm1, xmm2/m128 66 0F 38 07 /r Subtract and pack 16-bit signed integer horizontally with saturation
PHSUBD xmm1, xmm2/m128 66 0F 38 06 /r Subtract and pack 32-bit signed integers horizontally
PHADDSW xmm1, xmm2/m128 66 0F 38 03 /r Add and pack 16-bit signed integers horizontally with saturation
PHADDW xmm1, xmm2/m128 66 0F 38 01 /r Add and pack 16-bit integers horizontally
PHADDD xmm1, xmm2/m128 66 0F 38 02 /r Add and pack 32-bit integers horizontally
PALIGNR xmm1, xmm2/m128, imm8 66 0F 3A 0F /r ib Concatenate destination and source operands, extract byte-aligned result shifted to the right
PABSB xmm1, xmm2/m128 66 0F 38 1C /r Compute the absolute value of bytes and store unsigned result
PABSW xmm1, xmm2/m128 66 0F 38 1D /r Compute the absolute value of 16-bit integers and store unsigned result
PABSD xmm1, xmm2/m128 66 0F 38 1E /r Compute the absolute value of 32-bit integers and store unsigned result

SSE4 instructions[edit]

SSE4.1[edit]

Added with Core 2 manufactured in 45nm

SSE4.1 SIMD floating-point instructions[edit]
Instruction Opcode Meaning
DPPS xmm1, xmm2/m128, imm8 66 0F 3A 40 /r ib Selectively multiply packed SP floating-point values, add and selectively store
DPPD xmm1, xmm2/m128, imm8 66 0F 3A 41 /r ib Selectively multiply packed DP floating-point values, add and selectively store
BLENDPS xmm1, xmm2/m128, imm8 66 0F 3A 0C /r ib Select packed single precision floating-point values from specified mask
BLENDVPS xmm1, xmm2/m128, <XMM0> 66 0F 38 14 /r Select packed single precision floating-point values from specified mask
BLENDPD xmm1, xmm2/m128, imm8 66 0F 3A 0D /r ib Select packed DP-FP values from specified mask
BLENDVPD xmm1, xmm2/m128 , <XMM0> 66 0F 38 15 /r Select packed DP FP values from specified mask
ROUNDPS xmm1, xmm2/m128, imm8 66 0F 3A 08 /r ib Round packed single precision floating-point values
ROUNDSS xmm1, xmm2/m32, imm8 66 0F 3A 0A /r ib Round the low packed single precision floating-point value
ROUNDPD xmm1, xmm2/m128, imm8 66 0F 3A 09 /r ib Round packed double precision floating-point values
ROUNDSD xmm1, xmm2/m64, imm8 66 0F 3A 0B /r ib Round the low packed double precision floating-point value
INSERTPS xmm1, xmm2/m32, imm8 66 0F 3A 21 /r ib Insert a selected single-precision floating-point value at the specified destination element and zero out destination elements
EXTRACTPS reg/m32, xmm1, imm8 66 0F 3A 17 /r ib Extract one single-precision floating-point value at specified offset and store the result (zero-extended, if applicable)
SSE4.1 SIMD integer instructions[edit]
Instruction Opcode Meaning
MPSADBW xmm1, xmm2/m128, imm8 66 0F 3A 42 /r ib Sums absolute 8-bit integer difference of adjacent groups of 4 byte integers with starting offset
PHMINPOSUW xmm1, xmm2/m128 66 0F 38 41 /r Find the minimum unsigned word
PMULLD xmm1, xmm2/m128 66 0F 38 40 /r Multiply the packed dword signed integers and store the low 32 bits
PMULDQ xmm1, xmm2/m128 66 0F 38 28 /r Multiply packed signed doubleword integers and store quadword result
PBLENDVB xmm1, xmm2/m128, <XMM0> 66 0F 38 10 /r Select byte values from specified mask
PBLENDW xmm1, xmm2/m128, imm8 66 0F 3A 0E /r ib Select words from specified mask
PMINSB xmm1, xmm2/m128 66 0F 38 38 /r Compare packed signed byte integers
PMINUW xmm1, xmm2/m128 66 0F 38 3A/r Compare packed unsigned word integers
PMINSD xmm1, xmm2/m128 66 0F 38 39 /r Compare packed signed dword integers
PMINUD xmm1, xmm2/m128 66 0F 38 3B /r Compare packed unsigned dword integers
PMAXSB xmm1, xmm2/m128 66 0F 38 3C /r Compare packed signed byte integers
PMAXUW xmm1, xmm2/m128 66 0F 38 3E/r Compare packed unsigned word integers
PMAXSD xmm1, xmm2/m128 66 0F 38 3D /r Compare packed signed dword integers
PMAXUD xmm1, xmm2/m128 66 0F 38 3F /r Compare packed unsigned dword integers
PINSRB xmm1, r32/m8, imm8 66 0F 3A 20 /r ib Insert a byte integer value at specified destination element
PINSRD xmm1, r/m32, imm8 66 0F 3A 22 /r ib Insert a dword integer value at specified destination element
PINSRQ xmm1, r/m64, imm8 66 REX.W 0F 3A 22 /r ib Insert a qword integer value at specified destination element
PEXTRB reg/m8, xmm2, imm8 66 0F 3A 14 /r ib Extract a byte integer value at source byte offset, upper bits are zeroed.
PEXTRW reg/m16, xmm, imm8 66 0F 3A 15 /r ib Extract word and copy to lowest 16 bits, zero-extended
PEXTRD r/m32, xmm2, imm8 66 0F 3A 16 /r ib Extract a dword integer value at source dword offset
PEXTRQ r/m64, xmm2, imm8 66 REX.W 0F 3A 16 /r ib Extract a qword integer value at source qword offset
PMOVSXBW xmm1, xmm2/m64 66 0f 38 20 /r Sign extend 8 packed 8-bit integers to 8 packed 16-bit integers
PMOVZXBW xmm1, xmm2/m64 66 0f 38 30 /r Zero extend 8 packed 8-bit integers to 8 packed 16-bit integers
PMOVSXBD xmm1, xmm2/m32 66 0f 38 21 /r Sign extend 4 packed 8-bit integers to 4 packed 32-bit integers
PMOVZXBD xmm1, xmm2/m32 66 0f 38 31 /r Zero extend 4 packed 8-bit integers to 4 packed 32-bit integers
PMOVSXBQ xmm1, xmm2/m16 66 0f 38 22 /r Sign extend 2 packed 8-bit integers to 2 packed 64-bit integers
PMOVZXBQ xmm1, xmm2/m16 66 0f 38 32 /r Zero extend 2 packed 8-bit integers to 2 packed 64-bit integers
PMOVSXWD xmm1, xmm2/m64 66 0f 38 23/r Sign extend 4 packed 16-bit integers to 4 packed 32-bit integers
PMOVZXWD xmm1, xmm2/m64 66 0f 38 33 /r Zero extend 4 packed 16-bit integers to 4 packed 32-bit integers
PMOVSXWQ xmm1, xmm2/m32 66 0f 38 24 /r Sign extend 2 packed 16-bit integers to 2 packed 64-bit integers
PMOVZXWQ xmm1, xmm2/m32 66 0f 38 34 /r Zero extend 2 packed 16-bit integers to 2 packed 64-bit integers
PMOVSXDQ xmm1, xmm2/m64 66 0f 38 25 /r Sign extend 2 packed 32-bit integers to 2 packed 64-bit integers
PMOVZXDQ xmm1, xmm2/m64 66 0f 38 35 /r Zero extend 2 packed 32-bit integers to 2 packed 64-bit integers
PTEST xmm1, xmm2/m128 66 0F 38 17 /r Set ZF if AND result is all 0s, set CF if AND NOT result is all 0s
PCMPEQQ xmm1, xmm2/m128 66 0F 38 29 /r Compare packed qwords for equality
PACKUSDW xmm1, xmm2/m128 66 0F 38 2B /r Convert 2 × 4 packed signed doubleword integers into 8 packed unsigned word integers with saturation
MOVNTDQA xmm1, m128 66 0F 38 2A /r Move double quadword using non-temporal hint if WC memory type

SSE4a[edit]

Added with Phenom processors

Instruction Opcode Meaning
EXTRQ 66 0F 78 /0 ib ib Extract Field From Register
66 0F 79 /r
INSERTQ F2 0F 78 /r ib ib Insert Field
F2 0F 79 /r
MOVNTSD F2 0F 2B /r Move Non-Temporal Scalar Double-Precision Floating-Point
MOVNTSS F3 0F 2B /r Move Non-Temporal Scalar Single-Precision Floating-Point

SSE4.2[edit]

Added with Nehalem processors

Instruction Opcode Meaning
PCMPESTRI xmm1, xmm2/m128, imm8 66 0F 3A 61 /r imm8 Packed comparison of string data with explicit lengths, generating an index
PCMPESTRM xmm1, xmm2/m128, imm8 66 0F 3A 60 /r imm8 Packed comparison of string data with explicit lengths, generating a mask
PCMPISTRI xmm1, xmm2/m128, imm8 66 0F 3A 63 /r imm8 Packed comparison of string data with implicit lengths, generating an index
PCMPISTRM xmm1, xmm2/m128, imm8 66 0F 3A 62 /r imm8 Packed comparison of string data with implicit lengths, generating a mask
PCMPGTQ xmm1,xmm2/m128 66 0F 38 37 /r Compare packed signed qwords for greater than.

F16C[edit]

Half-precision floating-point conversion.

Instruction Meaning
VCVTPH2PS xmmreg,xmmrm64 Convert four half-precision floating point values in memory or the bottom half of an XMM register to four single-precision floating-point values in an XMM register
VCVTPH2PS ymmreg,xmmrm128 Convert eight half-precision floating point values in memory or an XMM register (the bottom half of a YMM register) to eight single-precision floating-point values in a YMM register
VCVTPS2PH xmmrm64,xmmreg,imm8 Convert four single-precision floating point values in an XMM register to half-precision floating-point values in memory or the bottom half an XMM register
VCVTPS2PH xmmrm128,ymmreg,imm8 Convert eight single-precision floating point values in a YMM register to half-precision floating-point values in memory or an XMM register

FMA3[edit]

Supported in AMD processors starting with the Piledriver architecture and Intel starting with Haswell processors and Broadwell processors since 2014.

Fused multiply-add (floating-point vector multiply–accumulate) with three operands.

Instruction Meaning
VFMADD132PD Fused Multiply-Add of Packed Double-Precision Floating-Point Values
VFMADD213PD
VFMADD231PD
VFMADD132PS Fused Multiply-Add of Packed Single-Precision Floating-Point Values
VFMADD213PS
VFMADD231PS
VFMADD132SD Fused Multiply-Add of Scalar Double-Precision Floating-Point Values
VFMADD213SD
VFMADD231SD
VFMADD132SS Fused Multiply-Add of Scalar Single-Precision Floating-Point Values
VFMADD213SS
VFMADD231SS
VFMADDSUB132PD Fused Multiply-Alternating Add/Subtract of Packed Double-Precision Floating-Point Values
VFMADDSUB213PD
VFMADDSUB231PD
VFMADDSUB132PS Fused Multiply-Alternating Add/Subtract of Packed Single-Precision Floating-Point Values
VFMADDSUB213PS
VFMADDSUB231PS
VFMSUB132PD Fused Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFMSUB213PD
VFMSUB231PD
VFMSUB132PS Fused Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFMSUB213PS
VFMSUB231PS
VFMSUB132SD Fused Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFMSUB213SD
VFMSUB231SD
VFMSUB132SS Fused Multiply-Subtract of Scalar Single-Precision Floating-Point Values
VFMSUB213SS
VFMSUB231SS
VFMSUBADD132PD Fused Multiply-Alternating Subtract/Add of Packed Double-Precision Floating-Point Values
VFMSUBADD213PD
VFMSUBADD231PD
VFMSUBADD132PS Fused Multiply-Alternating Subtract/Add of Packed Single-Precision Floating-Point Values
VFMSUBADD213PS
VFMSUBADD231PS
VFNMADD132PD Fused Negative Multiply-Add of Packed Double-Precision Floating-Point Values
VFNMADD213PD
VFNMADD231PD
VFNMADD132PS Fused Negative Multiply-Add of Packed Single-Precision Floating-Point Values
VFNMADD213PS
VFNMADD231PS
VFNMADD132SD Fused Negative Multiply-Add of Scalar Double-Precision Floating-Point Values
VFNMADD213SD
VFNMADD231SD
VFNMADD132SS Fused Negative Multiply-Add of Scalar Single-Precision Floating-Point Values
VFNMADD213SS
VFNMADD231SS
VFNMSUB132PD Fused Negative Multiply-Subtract of Packed Double-Precision Floating-Point Values
VFNMSUB213PD
VFNMSUB231PD
VFNMSUB132PS Fused Negative Multiply-Subtract of Packed Single-Precision Floating-Point Values
VFNMSUB213PS
VFNMSUB231PS
VFNMSUB132SD Fused Negative Multiply-Subtract of Scalar Double-Precision Floating-Point Values
VFNMSUB213SD
VFNMSUB231SD
VFNMSUB132SS Fused Negative Multiply-Subtract of Scalar Single-Precision Floating-Point Values
VFNMSUB213SS
VFNMSUB231SS

AVX[edit]

AVX were first supported by Intel with Sandy Bridge and by AMD with Bulldozer.

Vector operations on 256 bit registers.

Instruction Description
VBROADCASTSS Copy a 32-bit, 64-bit or 128-bit memory operand to all elements of a XMM or YMM vector register.
VBROADCASTSD
VBROADCASTF128
VINSERTF128 Replaces either the lower half or the upper half of a 256-bit YMM register with the value of a 128-bit source operand. The other half of the destination is unchanged.
VEXTRACTF128 Extracts either the lower half or the upper half of a 256-bit YMM register and copies the value to a 128-bit destination operand.
VMASKMOVPS Conditionally reads any number of elements from a SIMD vector memory operand into a destination register, leaving the remaining vector elements unread and setting the corresponding elements in the destination register to zero. Alternatively, conditionally writes any number of elements from a SIMD vector register operand to a vector memory operand, leaving the remaining elements of the memory operand unchanged. On the AMD Jaguar processor architecture, this instruction with a memory source operand takes more than 300 clock cycles when the mask is zero, in which case the instruction should do nothing. This appears to be a design flaw.[31]
VMASKMOVPD
VPERMILPS Permute In-Lane. Shuffle the 32-bit or 64-bit vector elements of one input operand. These are in-lane 256-bit instructions, meaning that they operate on all 256 bits with two separate 128-bit shuffles, so they can not shuffle across the 128-bit lanes.[32]
VPERMILPD
VPERM2F128 Shuffle the four 128-bit vector elements of two 256-bit source operands into a 256-bit destination operand, with an immediate constant as selector.
VZEROALL Set all YMM registers to zero and tag them as unused. Used when switching between 128-bit use and 256-bit use.
VZEROUPPER Set the upper half of all YMM registers to zero. Used when switching between 128-bit use and 256-bit use.

AVX2[edit]

Introduced in Intel's Haswell microarchitecture and AMD's Excavator.

Expansion of most vector integer SSE and AVX instructions to 256 bits

Instruction Description
VBROADCASTSS Copy a 32-bit or 64-bit register operand to all elements of a XMM or YMM vector register. These are register versions of the same instructions in AVX1. There is no 128-bit version however, but the same effect can be simply achieved using VINSERTF128.
VBROADCASTSD
VPBROADCASTB Copy an 8, 16, 32 or 64-bit integer register or memory operand to all elements of a XMM or YMM vector register.
VPBROADCASTW
VPBROADCASTD
VPBROADCASTQ
VBROADCASTI128 Copy a 128-bit memory operand to all elements of a YMM vector register.
VINSERTI128 Replaces either the lower half or the upper half of a 256-bit YMM register with the value of a 128-bit source operand. The other half of the destination is unchanged.
VEXTRACTI128 Extracts either the lower half or the upper half of a 256-bit YMM register and copies the value to a 128-bit destination operand.
VGATHERDPD Gathers single or double precision floating point values using either 32 or 64-bit indices and scale.
VGATHERQPD
VGATHERDPS
VGATHERQPS
VPGATHERDD Gathers 32 or 64-bit integer values using either 32 or 64-bit indices and scale.
VPGATHERDQ
VPGATHERQD
VPGATHERQQ
VPMASKMOVD Conditionally reads any number of elements from a SIMD vector memory operand into a destination register, leaving the remaining vector elements unread and setting the corresponding elements in the destination register to zero. Alternatively, conditionally writes any number of elements from a SIMD vector register operand to a vector memory operand, leaving the remaining elements of the memory operand unchanged.
VPMASKMOVQ
VPERMPS Shuffle the eight 32-bit vector elements of one 256-bit source operand into a 256-bit destination operand, with a register or memory operand as selector.
VPERMD
VPERMPD Shuffle the four 64-bit vector elements of one 256-bit source operand into a 256-bit destination operand, with a register or memory operand as selector.
VPERMQ
VPERM2I128 Shuffle (two of) the four 128-bit vector elements of two 256-bit source operands into a 256-bit destination operand, with an immediate constant as selector.
VPBLENDD Doubleword immediate version of the PBLEND instructions from SSE4.
VPSLLVD Shift left logical. Allows variable shifts where each element is shifted according to the packed input.
VPSLLVQ
VPSRLVD Shift right logical. Allows variable shifts where each element is shifted according to the packed input.
VPSRLVQ
VPSRAVD Shift right arithmetically. Allows variable shifts where each element is shifted according to the packed input.

AVX-512[edit]

AVX-512, introduced in 2014, adds 512-bit wide vector registers (extending the 256-bit registers, which become the new registers' lower halves) and doubles their count to 32; the new registers are thus named zmm0 through zmm31. It adds eight mask registers, named k0 through k7, which may be used to restrict operations to specific parts of a vector register. Unlike previous instruction set extensions, AVX-512 is implemented in several groups; only the foundation ("AVX-512F") extension is mandatory.[33] Most of the added instructions may also be used with the 256- and 128-bit registers.

Cryptographic instructions[edit]

Intel AES instructions[edit]

6 new instructions.

Instruction Description
AESENC Perform one round of an AES encryption flow
AESENCLAST Perform the last round of an AES encryption flow
AESDEC Perform one round of an AES decryption flow
AESDECLAST Perform the last round of an AES decryption flow
AESKEYGENASSIST Assist in AES round key generation
AESIMC Assist in AES Inverse Mix Columns

RDRAND and RDSEED[edit]

Instruction Description
RDRAND Read Random Number
RDSEED Read Random Seed

Intel SHA instructions[edit]

7 new instructions.

Instruction Description
SHA1RNDS4 Perform Four Rounds of SHA1 Operation
SHA1NEXTE Calculate SHA1 State Variable E after Four Rounds
SHA1MSG1 Perform an Intermediate Calculation for the Next Four SHA1 Message Dwords
SHA1MSG2 Perform a Final Calculation for the Next Four SHA1 Message Dwords
SHA256RNDS2 Perform Two Rounds of SHA256 Operation
SHA256MSG1 Perform an Intermediate Calculation for the Next Four SHA256 Message Dwords
SHA256MSG2 Perform a Final Calculation for the Next Four SHA256 Message Dwords

Intel AES Key Locker instructions[edit]

These instructions, available in Tiger Lake and later Intel processors, are designed to enable encryption/decryption with an AES key without having access to any unencrypted copies of the key during the actual encryption/decryption process.

Instruction Opcode Description Notes
LOADIWKEY xmm1,xmm2 F3 0F 38 DC /r Load internal wrapping key ("IWKey") from xmm1, xmm2 and XMM0. The two explicit operands (which must be register operands) specify a 256-bit encryption key. The implicit operand in XMM0 specifies a 128-bit integrity key. EAX contains flags controlling operation of instruction. After being loaded, the IWKey cannot be directly read from software, but is used for the key wrapping done by ENCODEKEY128/256 and checked by the Key Locker encode/decode instructions.

LOADIWKEY is privileged and can run in Ring 0 only.

ENCODEKEY128 r32,r32 F3 0F 38 FA /r Wrap a 128-bit AES key from XMM0 into a 384-bit key handle and output handle in XMM0-2. Source operand specifies handle restrictions to build into the handle. Destination operand is initialized with information about the source and attributes of the key.

The instruction also modifies XMM4-6 (zeroed out in existing implementations, but this should not be relied on).

ENCODEKEY256 r32,32 F3 0F 3A FB /r Wrap a 256-bit AES key from XMM1:XMM0 into a 512-bit key handle and output handle in XMM0-3.
AESENC128KL xmm,m384 F3 0F 38 DC /r Encrypt xmm using 128-bit AES key indicated by handle at m384 and store result in xmm. All of the Key Locker encode/decode instructions will check whether the handle is valid for the current IWKey and encode/decode data only if the handle is valid. The ZF flag is used to indicate whether the provided handle was valid or not (ZF=1 indicates invalid handle).
AESDEC128KL xmm,m384 F3 0F 38 DD /r Decrypt xmm using 128-bit AES key indicated by handle at m384 and store result in xmm.
AESENC256KL xmm,m512 F3 0F 38 DE /r Encrypt xmm using 256-bit AES key indicated by handle at m512 and store result in xmm.
AESDEC256KL xmm,m512 F3 0F 38 DF /r Decrypt xmm using 256-bit AES key indicated by handle at m512 and store result in xmm.
AESENCWIDE128KL m384 F3 0F 38 D8 /0 Encrypt XMM0-7 using 128-bit AES key indicated by handle at m384 and store each resultant block back to its corresponding register.
AESDECWIDE128KL m384 F3 0F 38 D8 /1 Decrypt XMM0-7 using 128-bit AES key indicated by handle at m384 and store each resultant block back to its corresponding register.
AESENCWIDE256KL m512 F3 0F 38 D8 /2 Encrypt XMM0-7 using 256-bit AES key indicated by handle at m512 and store each resultant block back to its corresponding register.
AESDECWIDE256KL m512 F3 0F 38 D8 /3 Decrypt XMM0-7 using 256-bit AES key indicated by handle at m512 and store each resultant block back to its corresponding register.

VIA PadLock instructions[edit]

Instruction Opcode Description
REP MONTMUL F3 0F A6 C0 Perform Montgomery Multiplication
REP XSHA1 F3 0F A6 C8 Compute SHA-1 hash for ECX bytes
REP XSHA256 F3 0F A6 D0 Compute SHA-256 hash for ECX bytes
CCS_HASH[34][35] F3 0F A6 E8 Compute SM3 hash for ECX units (bytes or 64-byte blocks) (Zhaoxin CPUs only)
XSTORE 0F A7 C0 Store Available Random Bytes (0 to 8 bytes)
REP XSTORE F3 0F A7 C0 Store ECX Random Bytes
REP XCRYPTECB F3 0F A7 C8 Encrypt/Decrypt ECX 128-bit blocks, using AES in ECB block mode
REP XCRYPTCBC F3 0F A7 D0 Encrypt/Decrypt ECX 128-bit blocks, using AES in CBC block mode
REP XCRYPTCTR F3 0F A7 D8 Encrypt/Decrypt ECX 128-bit blocks, using AES in CTR block mode
REP XCRYPTCFB F3 0F A7 E0  Encrypt/Decrypt ECX 128-bit blocks, using AES in CFB block mode
REP XCRYPTOFB F3 0F A7 E8 Encrypt/Decrypt ECX 128-bit blocks, using AES in OFB block mode
CCS_ENCRYPT[34][35] F3 0F A7 F0 Encrypt/Decrypt ECX 128-bit blocks, using SM4 encryption (Zhaoxin CPUs only)

Other instructions[edit]

x86 also includes discontinued instruction sets which are no longer supported by Intel and AMD, and undocumented instructions which execute but are not officially documented.

Virtualization instructions[edit]

AMD-V instructions[edit]

Instruction Meaning Notes Opcode
CLGI Clear Global Interrupt Flag Clears the GIF 0x0F 0x01 0xDD
INVLPGA Invalidate TLB entry in a specified ASID Invalidates the TLB mapping for the virtual page specified in RAX and the ASID specified in ECX. 0x0F 0x01 0xDF
SKINIT Secure Init and Jump with Attestation Verifiable startup of trusted software based on secure hash comparison 0x0F 0x01 0xDE
STGI Set Global Interrupt Flag Sets the GIF. 0x0F 0x01 0xDC
VMLOAD Load state From VMCB Loads a subset of processor state from the VMCB specified by the physical address in the RAX register. 0x0F 0x01 0xDA
VMMCALL Call VMM Used exclusively to communicate with VMM 0x0F 0x01 0xD9
VMRUN Run virtual machine Performs a switch to the guest OS. 0x0F 0x01 0xD8
VMSAVE Save state To VMCB Saves additional guest state to VMCB. 0x0F 0x01 0xDB

Intel VT-x instructions[edit]

Instruction Meaning Notes Opcode
INVEPT Invalidate Translations Derived from EPT Invalidates EPT-derived entries in the TLBs and paging-structure caches. 0x66 0x0F 0x38 0x80
INVVPID Invalidate Translations Based on VPID Invalidates entries in the TLBs and paging-structure caches based on VPID. 0x66 0x0F 0x38 0x80
VMFUNC Invoke VM function Invoke VM function specified in EAX. 0x0F 0x01 0xD4
VMPTRLD Load Pointer to Virtual-Machine Control Structure Loads the current VMCS pointer from memory. 0x0F 0xC7/6
VMPTRST Store Pointer to Virtual-Machine Control Structure Stores the current-VMCS pointer into a specified memory address. The operand of this instruction is always 64 bits and is always in memory. 0x0F 0xC7/7
VMCLEAR Clear Virtual-Machine Control Structure Writes any cached data to the VMCS 0x66 0x0F 0xC7/6
VMREAD Read Field from Virtual-Machine Control Structure Reads out a field in the VMCS 0x0F 0x78
VMWRITE Write Field to Virtual-Machine Control Structure Modifies a field in the VMCS 0x0F 0x79
VMCALL Call to VM Monitor Calls VM Monitor function from Guest System 0x0F 0x01 0xC1
VMLAUNCH Launch Virtual Machine Launch virtual machine managed by current VMCS 0x0F 0x01 0xC2
VMRESUME Resume Virtual Machine Resume virtual machine managed by current VMCS 0x0F 0x01 0xC3
VMXOFF Leave VMX Operation Stops hardware supported virtualisation environment 0x0F 0x01 0xC4
VMXON Enter VMX Operation Enters hardware supported virtualisation environment 0xF3 0x0F 0xC7/6

See also[edit]

References[edit]

  1. 1.0 1.1 "Re: Intel Processor Identification and the CPUID Instruction". Retrieved 2013-04-21.
  2. Andrew Schulman, "Unauthorized Windows 95" (ISBN 1-56884-169-8), chapter 8, p.249,257.
  3. US Patent 4974159, "Method of transferring control in a multitasking computer system" mentions 63h/ARPL.
  4. WikiChip, UMIP - x86
  5. Oracle Corp, Oracle® VM VirtualBox Administrator's Guide for Release 6.0, section 3.5: Details About Software Virtualization
  6. MBC Project,Virtual Machine Dectection
  7. Michal Necasek, SGDT/SIDT Fiction and Reality
  8. Intel, How Microarchitectural Data Sampling works, see mitigations section. Archived on Apr 22,2022
  9. Linux kernel documentation, Microarchitectural Data Sampling (MDS) mitigation
  10. sandpile.org, x86 architecture rFLAGS register, see note #7
  11. "Intel 80386 CPU Information | PCJS Machines".
  12. Geoff Chappell, CPU Identification before CPUID
  13. Toth, Ervin (1998-03-16). "BSWAP with 16-bit registers". Archived from the original on 1999-11-03. The instruction brings down the upper word of the doubleword register without affecting its upper 16 bits. Unknown parameter |url-status= ignored (help)
  14. Coldwin, Gynvael (2009-12-29). "BSWAP + 66h prefix". Retrieved 2018-10-03. internal (zero-)extending the value of a smaller (16-bit) register … applying the bswap to a 32-bit value "00 00 AH AL", … truncated to lower 16-bits, which are "00 00". … Bochs … bswap reg16 acts just like the bswap reg32 … QEMU … ignores the 66h prefix
  15. Intel "i486 Microprocessor" (april 1989, order no. 240440-001) p.142 lists CMPXCHG with 0F A6/A7 encodings.
  16. "Intel 486 & 486 POD CPUID, S-spec, & Steppings".
  17. Intel "i486 Microprocessor" (november 1989, order no. 240440-002) p.135 lists CMPXCHG with 0F B0/B1 encodings.
  18. "RSM—Resume from System Management Mode". Archived from the original on 2012-03-12. Unknown parameter |url-status= ignored (help)
  19. Cyrix 486SLC/e Data Sheet (1992), section 2.6.4
  20. Intel Community: Multibyte NOP Made Official. Archived on 7 Apr 2022.
  21. Intel Software Developers Manual, vol 3B (order no 253669-076us, december 2021), section 22.15 "Reserved NOP"
  22. Michal Necasek, "SYSENTER, Where Are You?"
  23. Intel 64 and IA-32 Architectures Optimization Reference Manual, section 7.3.2
  24. Intel 64 and IA-32 Architectures Software Developer’s Manual, section 4.3, subsection "PREFETCHh—Prefetch Data Into Caches"
  25. Intel, Control-flow Enforcement Technology Specification (v3.0, order no. 334525-003, march 2019)
  26. Intel SDM, rev 076, december 2021, volume 1, section 18.3.1
  27. Binutils mailing list: x86: CET v2.0: Update NOTRACK prefix
  28. Bruce Dawson, Intel Underestimates Error Bounds by 1.3 quintillion
  29. Intel SDM, rev 053 and later, describes the exact argument reduction procedure used for FSIN, FCOS, FSINCOS and FPTAN in volume 1, section 8.3.8
  30. Intel, Intel® 64 and IA-32 Architectures Optimization Reference Manual (order no. 248966-044, june 2021) section 3.5.2.3
  31. "The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for assembly programmers and compiler makers" (PDF). Retrieved October 17, 2016.
  32. "Chess programming AVX2". Retrieved October 17, 2016.
  33. "Intel AVX-512 Instructions". Intel. Retrieved 21 June 2022.
  34. 34.0 34.1 Zhaoxin, Core Technology | Instructions for the use of accelerated instructions for national encryption algorithm based on Zhaoxin processor (in Chinese). Archived on Jan 5, 2022
  35. 35.0 35.1 Zhaoxin, GMI User Manual v1.0 (in Chinese). Archived on Feb 28, 2022

External links[edit]


This article "X86 instruction listings" is from Wikipedia. The list of its authors can be seen in its historical and/or the page Edithistory:X86 instruction listings. Articles copied from Draft Namespace on Wikipedia could be seen on the Draft Namespace of Wikipedia and not main one.

Page kept on Wikipedia This page exists already on Wikipedia.